Volume 25, Issue 1 (7-2006)                   jame 2006, 25(1): 227-236 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

A. R. Safari, M. Ghayour, and A. Kabiri. Theoretical and Experimental Collapse Analysis of Ring Stiffened Shells Using Finite Element Software Packages and Application of Results to a Submarine Pressure Hull. jame. 2006; 25 (1) :227-236
URL: http://jame.iut.ac.ir/article-1-387-en.html
Abstract:   (5667 Views)
It is empirically established that, due to a number of factors involved, a classical (linear) analysis of buckling pressure is impossible. Nonlinear theories of buckling are, therefore, required that involve effective factors such as imperfections and welding effects. In this study, models are developed which are as close to allowable standard deviations as possible. In the next stage, their buckling behavior is investigated both experimentally and numerically using finite element packages ADINA, ANSYS, COSMOS, and MARC based on specific capabilities of each. Results show that reasonable estimates of real buckling pressure will become possible when material and geometrical nonlinearities and initial imperfections are introduced into the analytical system. Finally, in the light of the results obtained, a submarine pressure hull is analyzed.
Full-Text [PDF 1764 kb]   (1323 Downloads)    
Type of Study: Research | Subject: General
Received: 2014/10/25 | Published: 2006/07/15

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb