Volume 33, Issue 2 (Journal of Advanced Materials-fall 2015)                   jame 2015, 33(2): 17-30 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Z. Ansari, M. Alizadeh, A. Sadeghzadeh Attar. Synthesis and Evaluation of Corrosion Behavior of Al2O3/MgO/TiO2 Mixed-Metal Oxides Coating by Sol-Gel Method on Al Substrate. jame 2015; 33 (2) :17-30
URL: http://jame.iut.ac.ir/article-1-576-en.html
, z.ansari64@gmail.com
Abstract:   (9294 Views)
In this study, mixed metal oxides Al2O3/MgO/TiO2 coatings with Al/Mg/Ti ratios of 5:1:3 and 2.5:3:4 were coated on AA1100 aluminum by sol-gel method. The surface morphology, phase analysis and the corrosion behavior of the Al2O3/MgO/TiO2 coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and electrochemical impedance spectroscopy measurements (EIS) in 3.5 wt.% NaCl solution. The thermal behaviors, the bonds configuration, and functional groups of the coated samples were studied by thermo-gravimetric and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR), respectively. The results demonstrated that heat treatment at 450 °C caused an increase in porosity and coating cracking, finally leading to the decrease of corrosion resistance. The best corrosion resistance was achieved for the sample with Al/Mg/Ti molar ratio of 5:1:3 without any heat treatment. The structure of this sample was amorphous, and heat treatment resulted in crystallization and decrease of the corrosion resistance.
Full-Text [PDF 58934 kb]   (3240 Downloads)    
Type of Study: Research | Subject: General
Received: 2015/02/25 | Accepted: 2015/02/25 | Published: 2015/02/25

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb