Volume 33, Issue 3 (Journal of Advanced Materials- winter 2015)                   jame 2015, 33(3): 105-124 | Back to browse issues page

XML Persian Abstract Print

, smhmirbagheri@aut.ac.ir
Abstract:   (15825 Views)
In this paper, the behavior of energy absorption of crush-boxes, made of Aluminum foam advanced material, was investigated based on foam cellular structure homogeneity. Therefore, thin-walled tubes of Cu-Zn30wt.%.brass alloy with 27 mm diameter and 1 mm thickness were filled with A356-10vol.%SiC-Xwt.%. of TiH2 foam liquid. Foam samples with 1, 1.5, 2wt.%. of TiH2 were prepared by Form Grip into the brass tubes in order to produce crush-box .Then the crush-boxes as energy absorber elements were compressed by un-axial loading and then behaviors of progressive buckling foams were measured. Results showed by decreasing A356-10vol.% SiC foam density from 0.93 to 0.88 and then 0.43 g/cm3, the energy absorption would be changed from 12955 to 13465 and then to 11192 J, respectively. The sample with 1.5wt.% of TiH2 and density of 0.88 g/cm3 had the maximum energy absorption. Also, the results of foams cellular structure images showed that foams of homogenous cellular structure had a sizeable effect on the progressive buckling behavior. We developed a new parameter as "sorting coefficient", which can release the foams cellular structure non-homogeneity, and change the crush-boxes energy absorption during the progressive plastic buckling.
Full-Text [PDF 32676 kb]   (2469 Downloads)    
Type of Study: Research | Subject: General
Received: 2015/03/15 | Accepted: 2015/03/15 | Published: 2015/03/15

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.