Volume 34, Issue 4 (Journal of Advanced Materials-winter 2016)                   jame 2016, 34(4): 19-31 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gordani G, Ghasemi A, Saidi A. Effect of Mg, Co and Ti Cations on Magnetic and Microwave Properties of SrFe12O19 Nanoparticles. jame 2016; 34 (4) :19-31
URL: http://jame.iut.ac.ir/article-1-747-en.html
1- Department of Materials Engineering, Malek Ashtar University of Technology, Shahin Shahr, Iran , gordani@gmail.com
Abstract:   (10128 Views)

Nanoparticles of Mg–Co–Ti substituted strontium hexaferrite with nominal composition of SrFe12-2x(Mg,Co)0.5x TixO19 (x=0-2.5) were synthesized by a co-precipitation method. The structural, magnetic and electromagnetic properties of samples were studied as a function of x by thermal gravimetric (TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and vector network analysis. It was found that the synthesis temperature increases with an increase in Mg–Co–Ti substitution and hence the particle size decreases. The XRD results showed that whole samples had good crystallinity and with an increase incations, the impurity phase of Fe2O3 appears. The results of hysteresis loops indicated that the saturation of magnetization of ferrite decreases from 40 emu/g to 19 emu/g with an increase in x. The Mössbauer spectroscopy showed that the cations are substituted in the 12k site of magnetoplumbite structure. Vector network measurements showed that the doped samples had much more effective reflection loss values than those of undoped ferrites. As a result, Mg–Co–Ti doped Sr-hexaferrites with x=2 can be proposed as suitable absorbers for applications in microwave technology with a good deal of consistency.

Full-Text [PDF 981 kb]   (2815 Downloads)    
Type of Study: Research | Subject: General
Received: 2016/03/5 | Accepted: 2016/03/5 | Published: 2016/03/5

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb