Volume 35, Issue 1 (Journal of Advanced Materials-Spring 2016)                   jame 2016, 35(1): 109-119 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khanjani A, Ghasemi A, Hadi M. The Role of Annealing Temperature on Structural and Magnetic Properties of NdFeB Thin Films. jame. 2016; 35 (1) :109-119
URL: http://jame.iut.ac.ir/article-1-790-en.html
Department of Materials Engineering, Malek Ashtar University of Technology, Shahin Shahr, Iran , alikhanjani@yahoo.com
Abstract:   (8432 Views)

In the present research NdFeB thin films coupled with buffer and capping layer of W were formed on Si/SiO2 substrate by means of RF magnetron sputtering. The system was annealed at vaccum at different temperatures of 450, 500, 550,600 and 650 °C Phase analysis was carried out by XRD and it was found that NdFeB was formed without the formation of any kind of secondary phase. The cross sectional and grain size of the thin films were measured by scanning electron microscopy. Morphological studies were performed by atomic force microscopy. Magnetic properties of thin films including coercivity, saturation of magnetization and hysteresis area were evcaluated by vibrating sample magnetometer. It was found that by annealing at 400 °C the amorphous layer was formed.The highest intensity of peaks was formed at 550 °C and with an increase in temperature the intensity was declined. The grain size was increased by temperature and had an impact on the coercivity. With an increase of temperature up to 600 °C, perpendicular coercivity was increased and then by further increase of temperatute, coercivity was reduced. Based on the obtained data the temperature of 600 °C was selected as the optimum annealing temperature for reaching enhanced structural and magnetic feature.

Keywords: Thin film, NdFeB, Coercivity
Full-Text [PDF 746 kb]   (1442 Downloads)    
Type of Study: Research | Subject: General
Received: 2016/06/14 | Accepted: 2016/06/14 | Published: 2016/06/14

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb