Volume 37, Issue 2 (Journal of Advanced Materials-Summer 2018)                   jame 2018, 37(2): 29-37 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Panahi Moghadam A, Seifollahi M, Abbasi S M, Ghazi Mirsaeed S M. The Effect of Mg on Microstructure and High Temperature Mechanical Properties of Hasteloy X Superalloy. jame. 2018; 37 (2) :29-37
URL: http://jame.iut.ac.ir/article-1-863-en.html
Metallic Materials Research Center (MMRC_MA), Malek Ashter University of Technology Tehran, Iran. , m_seifollahi@alumnimail.iust.ac.ir
Abstract:   (5472 Views)
This paper was concerned with the effect of Mg on the temperature mechanical behavior and evaluation of the microstructure. The results showed that with increasing Mg from 0 to 47 ppm, the grain size was reduced from 64 to 38 µm and the carbides volume fraction was raised from 2.2 to 4.6 vot%. Mg changed the morphology of the carbide from a coarse and continuous one to a separate one. Mg with the mechanisms of grain boundary and matrix/carbide boundary led to changing the carbide composition and also, the mechanical properties. Mg increment from 0 to 47 ppm caused the enhancement of yield strength and rupture life from 309 to 345 MPa and from 16h to 30h, respectively. Grain size and the amount of carbide were the main factors contributing to the rupture of life properties in this study. The increment of the carbide volume fraction was the main mechanism of rupture life enhancement.
Full-Text [PDF 544 kb]   (876 Downloads)    
Type of Study: Research | Subject: Characterization and evaluation of engineering materials
Received: 2016/12/27 | Accepted: 2018/03/14 | Published: 2018/09/15

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb