- Shackelford JF. Bioceramics (1-Advanced ceramics). New Jersey: CRC Press, Taylor and Francis Group; 1999.
- Mortazavi WAS, Fathi MH. Introduction to biomaterials. 2nd ed. Isfahan: Arkan Publications; 2002. p. 344.
- Xiong K, Wu T, Fan, Q, Chen, L, Yan, M. Novel reduced graphene oxide/zinc silicate/ calcium silicate. electroconductive biocomposite for stimulating osteoporotic bone regeneration. ACS Appl Mater Interfaces 2017;9(51):1-41.
https://doi.org/10.1021/acsami.7b16206
- Wu C, Chang J. Synthesis and apatite-formation ability of akermanite. Mater Lett. 2004;58(19):2415-2417. https://doi.org/10.1016/j.matlet.2004.02.039
- Mojtaba A, Farzad M, Amir S. Preparation and characterization of akermanite/merwinite scaffolds for bone tissue repair. J Biomim Biomater Biomed Eng. 2020;44:73-81.
https://doi.org/10.4028/www.scientific.net/JBBBE.44.73
- Bhatkar VB, Bhatkar NV. Combustion synthesis and photoluminescence study of silicate biomaterials. Bull Mater Sci. 2011;34:1281-1284.
https://doi.org/10.1007/s12034-011-0166-5
- Wu C, Chang J, Zhai W, Ni S, Wang J. Porous akermanite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies. J Biomed Mater Res - Part B Appl Biomater. 2006;78(1):47-55.
https://doi.org/10.1002/jbm.b.30456
- Ducheyne P, Hastings GW. Metal and ceramic biomaterials. Vol. 1: Structure. New Jersey: CRC Press, Taylor and Francis Group; 1984.
- Fariborz T, Caleb A, Keivan D. Synthesis, characterization and formation mechanisms of nanocrystalline akermanite powder. J Mater Res Technol. 2021;11:792-800.
https://doi.org/10.1016/j.jmrt.2021.01.021
- Mehrali M, Moghaddam E, Shirazi SFS, Baradaran S, Latibari ST. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate–reduced graphene oxide ACS Appl Mater Interfaces. 2014;6(6):3947-62.
https://doi.org/10.1021/am500845x
- Liu XY, Ding CX, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 2004;25(10):1755−1761.
https://doi.org/10.1016/j.biomaterials.2003.08.024
- Najafinezhad A, Abdellahi M, Ghayour H, Soheily A, Chami A, Khandan A. A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Mater Sci Eng C 2017;72:259-267.
https://doi.org/10.1016/j.msec.2016.11.084
- Pei F, Chengde G, Cijun Sh, Shuping P. Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania. RSC Adv 2015;5:3498-3507.
https://doi.org/10.1039/C4RA12095G
- Arastouei M, Khodaei M, Atyabi SM,, Jafari Nodoushan Poly lactic acid-akermanite composite scaffolds prepared by fused filament fabrication for bone tissue engineering. J Mater Res Technol. 2020;9( 6): 14540-14548.
https://doi.org/10.1016/j.jmrt.2020.10.036
- Seyma D, Büsra B. Effect of akermanite powders on mechanical properties and bioactivity of chitosan-based scaffolds produced by 3D-bioprinting. Ceram Int. 2021;47:13912–13921.
https://doi.org/10.1016/j.ceramint.2021.01.258
- Wu C, Chang J, Ni S, Wang J. In vitro bioactivity of akermanite ceramics. J Biomed Mater Res A 2006;76(1):73-80.
https://doi.org/10.1016/j.ceramint.2021.01.258
- Ghadiri S, Hassanzadeh-Tabrizi A. Synthesis and characterization of nanoporous calcium magnesium silicate and assessment of the calcination temperature effect on its drug delivery behavior. J Adv Mater Eng. 1397;37(1):69-82. (In Persian)
https://doi.org/10.29252/jame.37.1.69
- Liu XY, Ding CX, Wang, ZY. Apatite formed on the surface of plasma-sprayed coating immersed in simulated body fluid. Biomaterials 2001;22(14):2007-2012.
https://doi.org/10.1016/S0142-9612(00)00386-0
- Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL. Toughening in graphene ceramic composites. ACS Nano 2011;5(4):3182–3190.
https://doi.org/10.1021/nn200319d
- Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA. Graphene-based composite Nature 2006;442(7100):282–286. https://doi.org/10.1038/nature04969
- Bódis E, Tapasztó O, Károly Z, Fazekas P, Klébert S, Keszler A, et al. Spark plasma sintering of Si3N4/multilayer graphene composites. Open Chem. 2015;13:484–489.
https://doi.org/10.1515/chem-2015-0064
- Liu J, Yang Y, Hasssinin H, Jumbu N, Deng S, Zuo Q, et al. Graphene-alumina nanocomposites with improved mechanical properties for biomedical applications. ACS Appl Mater Interfaces 2015;8(4):2607-2616. https://doi.org/1021/acsami.5b10424
- Nair M, Nancy D, Krishnan AG, Anjusree GS, Vadukumpully S. Graphene oxide nanoflakes incorporated gelatin–hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. 2015;26:161-171. https://doi.org/10.1088/0957-4484/26/16/161001
- Hedayati F, Jalaly M, Mohammadi S, Mousavi-Khoshdel SM. Synthesis of Co3O4/RGO nanocomposite and investigation of its electrochemical properties for supercapacitor applications. J Adv Mater Eng. 1402;42(4):45-59. (In Persian)
https://doi.org/10.47176/jame.42.4.1039
- Rouhi N, Hassanpoor S. Synthesis of template free morphology controlled α-MnO2 nanorod and electrochemical capacitive study of its RGO nanocomposite. J Adv Mater Eng. 1402;42(3):31-48. (In Persian)
https://doi.org/10.47176/jame.42.3.1032
- Atashgar K, Masoudi R. Radar evasion control of military structures using graphene oxide coating RGO/NiFe2O4 and polynomial profile Monitoring. J Adv Mater Eng. 1401;41(4):61-74. (In Persian) https://doi.org/10.47176/jame.41.4.1009
- Ghobadi N, Hosseini Moradi SA, Amirzade M. Synthesis and structural, magnetic, and electromagnetic characterization of cobalt ferrite/ reduced graphene oxide composite. J Adv Mater Eng. 1400;40(4):69-83. (In Persian)
https://doi.org/10.47176/jame.40.4.23402
- Aram R, Rasoul R. Changing the wettability of graphene oxide layer using photocatalytic reduction. Iran J Phys Res. 2016,16 (1):19-25. (In Persian) https://doi.org/10.18869/acadpub.ijpr.16.1.19