1. Godbey, WT., Atala, A., “In Vitro Systems for Tissue Engineering”, Annals of the New York Academy of Sciences, Vol. 961, p.p. 10-26, 2002.
2. Diego, S., Principles of Tissue Engineering, 2nd eddition, Academic Press, 2000.
3. Ross, JM., “Cell-Extracellular Matrix Interactions”, Oxford: Elsevier Science Ltd, p.p. 15-27, 1998.
4. Sipe, JD., “Tissue Engineering and Reparative Medicine”, Annals of the New York Academy of Sciences, Vol. 961, p.p. 1-9. 2002.
Chen, Q., Roether, J. A. and Boccaccini, A. R.,, “Tissue Engineering Scaffolds from Bioactive Glass and Composite Materials” Chapter 6, Vol. 4, p.p. 1-27, 2008.
6. Fan, W., Changsheng, L., Brian, O., Jie, W., Yung N., “Fabrication and Properties of Porous Scaffold of Magnesium Phosphate/Polycaprolactone Biocomposite for Bone Tissue Engineering”, Applied Surface Science, Vol. 258, p.p. 7589– 7595, 2012.
7. Bergsma, E.J., Rozema, F.R., Bos, R., Debruijn, W.C., “Foreign-Body Reactions to Resorbable Poly (L-Lactide) Bone Plates and Screws Used for the Fixation of Unstable Zygomatic Fractures”, Journal of Oral and Maxillofacial Surgery, Vol. 51(6), p.p. 666-670, 1993.
8. Bergsma, J.E, Debruijn, W.C, Rozema, F.R., Bos, R., Boering, G. L., “Degradation Tissue Response to Poly (L-lactide) Bone Plates and Screws”, Biomaterials, Vol. 16(1), p.p. 25-3, 1995.
9. Mano, J.F., Reis, R.L, “Osteochondral Effects: Present Situation and Tissue Engineering Approaches”, Journal of Tissue Engineering and Regenerative Medicine, Vol. 1, p.p. 281-287, 2007.
10. Avinash, H. A., Dinesh, R. K, Kalpana, S. K., “Biomineralized Hydroxyapatite Nanoclay Composite Scaffolds with Polycaprolactone for Stem Cell-Based Bone Tissue Engineering”, Journal of Biomedical Materials Research Part A, , Vol. 103, p.p. 2077-2101, 2015.
11. Webster, T.J., Ergun, C., Doremus, R.H., Siegel R.W., Bizios, R., “Enhanced Functions of Osteoblasts on Nanophase Ceramics”, Biomaterials, Vol. 21(17), p.p. 1803-1810, 2000,
12. Shi, Z., Huang, X., Cai, Y., Tang, R., Yang, D., “Size Effect of Hydroxyapatite Nanoparticles on Proliferation and Apoptosis of Osteoblast-Like Cells”, Acta Biomaterialia, Vol. 5(1), p.p. 338-345, 2009.
13. Woodruff, M.A., Werner Hutmacher, D., “The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century”, Polymer Science, Vol. 35, p.p. 1217–1256, 2010.
14. Ali Akbari Ghavimi, S., Ebrahimzadeh, M.H., Solati-Hashjin, M., Abu Osman, N.A., “Polycaprolactone/ Starch Composite: Fabrication, Structure, Properties, and Applications”, Journal of Biomedical Materials Research Part A, Vol. 103(7), p.p. 2482–2498, 2015.
15. Dai, N., Williamson, M.R., Khammo, N., et al, “Composite Cell Support Membranes Based on Collagen and Polycaprolactone for Tissue Engineering of Skin”, Biomaterials, Vol. 25, p.p. 4263-4271, 2004.
16. Lebourg, M., Anton, J.S., Ribelles, J.L.G., “Hybrid Structure in PCL-HAp Scaffold Resulting from Biomimetic Apatite Growth”, Journal of Materials Science: Materials in Medicine, Vol. 21, p.p. 33–44, 2010.
17. Eosoly, S., Brabazon, D., Lohfeld, S., Looney, L., “Selective Laser Sintering of Hydroxyapatite/ Polycaprolactone Scaffolds”, Acta Biomaterialia, Vol. 6, p.p. 2511–2517, 2010.
18. Heo, S.J., Kim, S.E., Wei, J., Hyun, Y.T., Yun, H.S., Kim, D.H., Shin, J.W., “ Fabrication and Characterization of Novel Nano- and Micro-HA/PCL Composite Scaffolds Using a Modified Rapid Prototyping Process”, Journal of Biomedical Materials Research Part A, Vol. 89A, p.p. 108–116, 2009.
19. Fabbri, P., Cannillo, V., Sola, A., Dorigato, A., Chiellini, F., “Highly Porous Polycaprolactone-45S5Bioglass® Scaffolds for Bone Tissue Engineering”, Composites Science and Technology, Vol. 70, p.p. 1869–1878, 2010.
20. Cannillo, V., Chiellini, F., Fabbri, P., Sola, A., “Production of Bioglass®45S5-Polycaprolactone Composite Scaffolds via Salt-Leaching”, Composite Structures, Vol. 92, p.p. 1823–1832, 2010.
21. Li, X., Shi, J.L., Dong, X.P., Zhang, L.X., Zeng, H.Y., “A Mesoporous Bioactive Glass/Polycaprolactone Composite Scaffold and its Bioactivity Behavior”, Journal of Biomedical Materials Research Part A, Vol. 84A, p.p. 84–91, 2008.
22. Lei, Y., Rai, B., Ho, K.H., Teoh, S.H., “In Vitro Degradation of Novel Bioactive Polycaprolactone-20% Tricalcium Phosphate Composite Scaffolds for Bone Engineering”, Materials Science and Engineering C, Vol. 27, p.p. 293–298, 2007.
23. Yeo, A., Sju, E., Rai, B., Teohm, S.H., “Customizing the Degradation and Load-Bearing Profile of 3D Polycaprolactone-Tricalcium Phosphate Scaffolds under Enzymatic and Hydrolytic conditions”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 87B, p.p. 562–569, 2008.
24. Chiang, M.F., Wu, T.M., “Synthesis and Characterization of Biodegradable Poly (L-lactide)/ Layered Double Hydroxide Nano-Composites”, Composites Science and Technology, Vol. 70, p.p. 110–115, 2010.
25. He, J., Wei, M., Li, B. , Kang, Y., Evans, D.G., Duan, X., “Preparation of Layered Double Hydroxides”, Structure and Bonding, Vol. 119, p.p. 89–119, 2006.
26. Bergaya, F., et al, Handbook of Clay Science, Developments in Clay Science, Vol. 2, p. 1021, 2006.
27. Hoyo, C.D., “Layered Double Hydroxide and Human Health”, Applied Clay Science, Vol. 36, p.p. 103–121, 2006.
28. Kovanda. F., Kolousˇek, D., Cı´lova´, Z. and Hulı´nsky´, V., "Crystallization of Synthetic Hydrotalcite under Hydrothermal Conditions”, Applied Clay Science, Vol. 28, p.p. 101– 109, 2005.
29. Karageorgiou, V., Kaplan, D., “Porosity of 3D Biomaterial Scaffolds and Osteogenesis.”, Biomaterials, Vol. 26, p.p. 5474–5491, 2005.
30. Wang , W., Li, D., Wang, M.C, Li, Y.L., Gao, C.A. “Hybrid Scaffold of Poly( Lacide-Co-Glycolide) Sponge Filled with Fibrin Gel for Cartilage Tissue Engineering.”, Chinese Journal of Polymer Science, Vol. 29, p.p. 233–240, 2011.
31. Wang, M., Ma, L., Li, D., Jiang, P., Gao, C., “Preparation of Polycaprolactone Microspheres-Aggregated Scaffold with Ultra-Big Pores and Fuzzy Sphere Surface by a One-Step Phase Separation Method”, Journal of Biomedical Materials Research Part A, Vol. 101A, p.p. 3219–3227, 2013.
32. Qiu, Y., Mao, Z., Zhao Y., Zhang J., Guo, Q., Gou, Z., Gao C,. “Polycaprolactone Scaffold Modified with Galactosylated Chitosan for Hepatocyte Culture”, Macromolecular Research, Vol. 20,
p.p. 283–291, 2012.
33. Gerc¸ek, I., Tıgˇ lı, R. S., Gu¨mu¨ s_dereliogˇlu, M., “A Novel Scaffold Based on Formation and Agglomeration of PCL Microbeads by Freeze-Drying”, Journal of Biomedical Materials Research Part A, Vol. 86A, p.p. 1012-1022, 2008.
34. Ma´s Estelle´s, J. , Vidaurre, A., Meseguer Duen˜as Jose´, M. , Castilla Corta´zar, I., “Physical Characterization of Polycaprolactone Scaffolds”, The Journal of Materials Science: Materials in Medicine, Vol. 19, p.p. 189–195, 2008.
35. Hou, Q., Grijpma, D., Feijen, J., “ Preparation of Interconnected Highly Porous Polymeric Structures by a Replication and Freeze-Drying Process”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 67B, p.p. 732–740, 2003.
36. Martin, R I., Brown, P. W., “The Effects of Magnesium on Hydroxyapatite Formation In Vitro from CaHPO4 and Ca4(PO4)2O at 37.4°C”, Calcified Tissue International, Vol. 60, p.p. 538–546, 1997.