1. Garay, J., "Current-Activated, Pressure-Assisted Densification of Materials", Annual Review of Materials Research, Vol. 40, pp. 445-468, 2010.
2. Orru, R., Licheri, R., Locci, A. M., Cincotti, A. and Cao, G., "Consolidation/Synthesis of Materials by Electric Current Activated/Assisted Sintering", Materials Science and Engineering: R: Reports,
Vol. 63, No. 4, pp. 127-287, 2009.
3. Matsugi, K., Kuramoto, H., Hatayama, T. and Yanagisawa, O., "Temperature Distribution at Steady State under Constant Current Discharge in Spark Sintering Process of Ti and Al2O3 Powders", Journal of Materials Processing Technology, Vol. 134, No. 2, pp. 225-232, 2003.
4. Anselmi-Tamburini, U., Gennari, S., Garay, J. and Munir, Z. A., "Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process: II. Modeling of Current and Temperature Distributions", Materials Science and Engineering: A, Vol. 394, No. 1, pp. 139-148, 2005.
5. Vanmeensel, K., Laptev, A., Hennicke, J., Vleugels, J. and Van der Biest, O., "Modelling of the Temperature Distribution during Field Assisted Sintering", Acta Materialia, Vol. 53, No. 16,
pp. 4379-4388, 2005.
6. Wang, Y. C., Fu, Z. Y. and Wang, W. M., "Numerical Simulation of the Temperature Field in Sintering of BN by SPS", Key Engineering Materials, Vol. 249, pp. 471-476, 2003.
7. Wang, X., Casolco, S., Xu, G. and Garay, J., "Finite Element Modeling of Electric Current-Activated Sintering: The Effect of Coupled Electrical Potential, Temperature and Stress", Acta Materialia, Vol. 55, No. 10, pp. 3611-3622, 2007.
8. Vanmeensel, K., Huang, S., Laptev, A., Vleugels, J. and Van der Biest, O., "Modeling of Field Assisted Sintering Technology (FAST) and its Application to Electro‐Conductive Systems", Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II: Ceramic Engineering and Science Proceedings, Vol 29, No. 9, pp. 109-122, 2008.
9. Grasso, S., Sakka, Y. and Maizza, G., "Pressure Effects on Temperature Distribution during Spark Plasma Sintering with Graphite Sample", Materials Transactions, Vol. 50, No. 8, pp. 2111-2114, 2009.
10. Chennoufi, N., Majkic, G., Chen, Y. and Salama, K., "Temperature, Current, and Heat Loss Distributions in Reduced Electrothermal Loss Spark Plasma Sintering", Metallurgical and Materials Transactions A, Vol. 40, No. 10, pp. 2401-2409, 2009.
11. Mondalek, P., Silva, L., Durand, L. and Bellet, M., "Numerical Modelling of Thermal-Electrical Phenomena in Spark Plasma Sintering", American Institute of Physics Conference Series, Vol. 1252,
pp. 697-704, 2010.
12. Munoz, S. and Anselmi-Tamburini, U., "Temperature and Stress Fields Evolution during Spark Plasma Sintering Processes", Journal of Materials Science, Vol. 45, No. 23, pp. 6528-6539, 2010.
13. Zhang, J. and Zavaliangos, A., "Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering", Journal of electronic materials, Vol. 40, No. 5, pp. 873-878, 2011.
14. Li, X., Wu, P. and Zhu, D., “Fabrication and Properties of Porous Si3N4–SiO2 Ceramics with Dense Surface and Gradient Pore Distribution”, Ceramic International, Vol. 40, No. 3, pp. 5079–5084, Apr. 2014.