Preparation of Lithium Ion Conductor Glass-Ceramic with High Conductivity for Producing Lithium-Air and all-Solid-State Lithium-Ion Batteries

Authors

1 1- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran

2 2- Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran

Abstract

In this research, new lithium ion conductor glass-ceramics with NASICON-type structure (Li1+x+yAlxCryGe2-x-y (PO4)3, x+y=0.5) were synthesized using melt-quenching method and converted to glass-ceramics through heat treatment. Influence of addition of different concentrations of aluminum and chromium in LiGe2(PO4)3 glass-ceramic was investigated for ionic conduction improvement. Substitution of Ge4+ ions in NASICON structure by Al3+ and Cr3+ ions induced more Li+ ions in A2 vacant sites to obtain charge balance and also changed the unit cell parameters. These two factors led to ionic conductivity improvement of synthesized glass-ceramics. The glass-ceramics were characterized and the amorth structures were investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Differential Scanning Calorimetry (DSC) and Complex Impedance Spectroscopy (CIS). The highest lithium ion conductivity of 8.82×10-3 S/cm was obtained for x=0.4 and y=0.1 (Li1.5Al0.4Cr0.1Ge1.5(PO4)3) crystallized at 850 oC for 8 h with minimum activation energy of 0.267 eV.
 

Keywords


1. Feng, J. K., Lu, L., and Lai, M. O., “Lithium Storage Capability of Lithium Ion Conductor Li1.5Al0.5Ge1.5(PO4)3”, Journal of Alloys and Compounds, Vol. 501, pp. 255-258, 2010.
2. Kim, J. G., Son, B., Mukherjee, S., Schuppert, N., Bates, A., Kwon, O., Choi, M. J., Chung, H. Y., and Park, S., “A Review of Lithium and Non-Lithium Based Solid State Batteries”, Journal of Power Sources, Vol. 282, pp. 299-322, 2015.
3. Kraytsberg, A., and Ein-Eli, Y., “Review on Li-Air Batteries, Opportunities, Limitations and Perspective”, Journal of Power Sources, Vol. 196, pp. 886-893, 2011.
4. Dudney, N. J., “Solid-State Thin-Film Rechargeable Batteries”, Materials Science and Engineering B, Vol. 116, pp. 245-249, 2005.
5. Geng, H. X., Mei, A., Dong, C., Lin,Y. H., and Nan, C. W., “Investigation of Structure and Electrical Properties of Li0.5La0.5TiO3 Ceramics via Microwave Sintering”, Journal of Alloys and Compounds, Vol. 481, pp. 555-558, 2009.
6. Kobayashi, Y., Seki, S., Yamanaka, A., Miyashiro, H., Mita, Y., and Iwahori, T., “Development of High Voltage and High Capacity All-Solid-State Lithium Secondary Batteries”, Journal of Power Sources, Vol. 146, pp. 719-722, 2005.
7. Schwenzel, J., Thangadurai, V., and Weppner, W., “Developments of High Voltage All-Solid-State Thin Film Lithium Ion Batteries”, Journal of Power Sources, Vol. 154, pp. 232-238, 2006.
8. Zhang, M., Takahashi, K., Uechi, I., Takeda, Y., Yamamoto, O., Im, D., Lee, D., Chi, B., Pu, J., Li, J., and Imanishi, N., “Water-Stable Lithium Anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 Sheet Prepared by Tape Casting Method for Lithium-Air Batteries”, Journal of Power Sources, Vol. 235, pp. 117-121, 2013.
9. Knauth, P., “Inorganic Solid Li Ion Conductors: An Overview”, Solid State Ionics, Vol. 180, pp. 911-916, 2009.
10. Aleshin, G. Y., Semenenko, D. A., Belova, A. I., Zakharchenko, T. K., Itkis, D. M., Goodilin, E. A., and Tretyakov, Y. D., “Protected Anodes for Lithium-Air Batteries”, Solid State Ionics, Vol. 184, pp. 62-64, 2011.
11. Yao, X. L., Xie, S., Nian, H. Q., and Chen, C. H., “Spinel Li4Ti5O12 as a Reversible Anode Material Down to 0 V”, Journal of Alloys and Compounds, Vol. 465, pp. 375-379, 2008.
12. Kotobuki, M., Hoshina, K., and Kanamura, K., “Electrochemical Properties of Thin TiO2 Electrode on Li1+xAlxGe2−x(PO4) Solid Electrolyte” Solid State Ionics, Vol. 198, pp. 22-25, 2011.
13. Kun, H., Chengkui, Z., Yanhang, W., Bin, H., Xianyin, Y., Huifeng, Z., Yonghua, L., and Jiang, C., “Stability of Lithium Ion Conductor NASICON Structure Glass Ceramic in Acid and Alkaline Aqueous Solution” Solid State Ionics, Vol. 254,pp. 78-81, 2014.
14. Sun, Y., “Lithium Ion Conducting Membranes for Lithium-Air Batteries”, Nano Energy, Vol. 2,pp. 801-816, 2013.
15. Maldonado-Manso, P., Losilla, E. R., Martı´nez-Lara, M., Aranda, M., Bruque, S., Mouahid, F., and Zahir, M., “High Lithium Ionic Conductivity in the Li1+xAlxGeyTi2-x-y(PO4)3 NASICON Series”, Chemistry of Materials, Vol. 15, pp. 1879-1885, 2003.
16. Svitanko, A. I., Novikova, S. A., Safronov, D. V., and Yaroslavtsev, A. B., “Cation Mobility in Li1+xTi2–xCrx(PO4)3 Nasicon-Type Phosphates”, Neorganicheskie Materialy, Vol. 47, pp. 1521-1526, 2011.
17. Fu, J., “Fast Li+ Ion Conduction in Li2O-(Al2O3 ,Ga2O3)-TiO2-P2O5 Glass Ceramics”, Journal of Materials Science, Vol. 33, pp. 1549-1553, 1998.
18. Chowdari, B. V. R., SubbaRao, G. V., and Lee, G. Y. H., “XPS and Ionic Conductivity Studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 Glass Ceramics”, Solid State Ionics, Vol. 136, pp. 1067-1075, 2000.
19. Kun, H., Yanhang, W., Chengkui, Z., Huifeng, Z., Yonghua, L., Jiang, C., Bin, H., and Juanrong, M., “Influence of Al2O3 Additions on Crystallization Mechanism and Conductivity of Li2O-Ge2O-P2O5 Glass Ceramics”, Physica B, Vol. 406, pp. 3947-3950, 2011.
20. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., and Adachi, G., “Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and In Systems”, Bulletin of the Chemical Society of Japan, Vol. 6, pp. 2200-2204, 1992.
21. Xu, X., Wen, Z., Gu, Z., and Lin, Z., “High Lithium Conductivity in Li1.3Cr0.3Ge1.7(PO4)3 Glass Ceramics”, Material Letters, Vol. 58, pp. 3428- 3431, 2004.
22. Xu, X., Wen, Z., Gu, Z., Xu, X., and Lin, Z., “Preparation and Characterization of Lithium Ion Conducting Glass Ceramics in The Li1+xCrxGe2-x(PO4)3 System”, Electrochemistry Communications, Vol. 6, pp. 1233-1237, 2004.
23. Zhang, P., Wang, H., Si, Q., Matsui, M., Takeda, Y., Yamamoto, O., and Imanishi, N., “High Lithium Ion Conductivity Solid Electrolyte of Chromium and Aluminum Co-Doped NASICON-Type LiTi2(PO4)3”, Solid State Ionics, Vol. 272, pp. 101-106, 2015.
24. Thochom, J. S., and Kumar, B., “Composite Effect in Superionically Conducting Lithium Aluminium Germanium Phosphate Based Glass Ceramic”, Journal of Power Sources, Vol. 185, pp. 480-485, 2008.
25. Chung, H., and Kang, B., “Increase in Grain Boundary Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 by Adding Excess Lithium”, Solid State Ionics, Vol. 263, pp. 125-130, 2014.
26. Zhang, M., Huang, Z., Cheng, J., Yamamoto, O., Imanishi, N., Chi, B., and Pu, J., “Solid State Lithium Ionic Conducting Thin Film Li1.4Al0.4Ge1.6(PO4)3 Prepared by Tape Casting”, Journal of Alloys and Compounds, Vol. 590, pp. 147-152, 2014.
27. Liu, Z., Venkatachalam, S., and Wüllen, L., “Structure, Phase Separation and Li Dynamics in Sol-gel-derived Li1+ xAlxGe2− x(PO4)3”, Solid State Ionics, Vol. 276, pp. 47-55, 2015.
28. Safanama, D., Damiano, D., Prasada Rao, R., and Adams, S., “Lithium Conducting Solid Electrolyte Li1 + xAlxGe2− x(PO4)3 Membrane for Aqueous Lithium Air Battery”, Solid State Ionics, Vol. 262, pp. 211-215, 2014.
29. Leo, C. J., Chowdari, B. V. R., Subba Rao, G. V., and Souquet, J. L., “Lithium Conducting Glass Ceramic with Nasicon Structure”, Materials Research Bulletin, Vol. 37, pp. 1419-1430, 2002.
30. Jadhav, H. S., Cho, M., Kalubarme, R. S., Lee, J., Jung, K., Shin, K., and Park, C., “Influence of B2O3 Addition on the Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 Glass Ceramics” Journal of Power Sources, Vol. 241, pp. 502-508 2013.
31. Xu, X. X., Wen, Z. Y., Wu, X. W., Yang, XL., and Gu, Z. H., “Lithium Ion Conducting Glass Ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with Good Electrical and Electrochemical Properties”, Journal of American Ceramic Society, Vol. 90, pp. 2802-2806, 2007.
32. Thokchom, J. S., Gupta, N., and Kumar, B., “Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass-Ceramic”, Journal of Electrochemical Society, Vol. 155, pp. A915-A920, 2008.
33. Zhu, Y., Zhang, Y., and Lu, L., “Influence of Crystallization Temperature on Ionic Conductivity of Lithium Aluminum Germanium Phosphate Glass Ceramic” Journal of Power Sources, Vol. 290, pp. 123-129, 2015.
34. Irvine, J. T. S., Sinclair, D. C., and West, A. R., “Electroceramics: Characterization by Impedance Spectroscopy”, Advanced Material, Vol. 2, pp. 132-138, 1990.
35. Thokchom, J. S., and Kumar, B., “The Effects of Crystallization Parameters on the Ionic Conductivity of a Lithium Aluminum Germanium Phosphate Glass Ceramic”, Journal of Power Sources, Vol. 195, pp. 2870-2876, 2010.
36. Fu, J., “Fast Li Ion Conducting Glass Ceramics in the System Li2O- Al2O3 -Ge2O -P2O5”, Solid State Ionics, Vol. 104, pp. 191-194, 1997.
37. Goharian, P., Aghaei, A. R., EftekhariYekta, B., and Banijamali, S., “Ionic Conductivity and Microstructural Evaluation of Li2O-TiO2-P2O5-SiO2 Glass-Ceramics”, Ceramic International, Vol. 41, pp. 1757-1763, 2015.
38. Goharian, P., EftekhariYekta, B., Aghaei, A. R., and Banijamali, S., “Lithium Ion Conducting Glass-Ceramics in the System Li2O-TiO2-P2O5-Cr2O3-SiO2”, Journal of Non-Crystalline Solid, Vol. 409, pp. 120-125, 2015.
39. Hongping, C., Haizheng, T., Qide, W., and Xiujian, Z., “Thermal Behavior and Lithium Ion Conductivity of L2O-Al2O3-TiO2-SiO2-P2O5 Glass-Ceramics”, Journal of Wuhan University of Technology-Mater, Vol. 27, pp. 67-72, 2012.

تحت نظارت وف ایرانی