2. Petkov, V., Jones, P. T., Boydens, E., Blanpain, B., and Wollants, P., “Chemical Corrosion Mechanisms of Magnesia-Chromite and Chrome-Free Refractory Bricks by Copper Metal and Anode Slag”, Journal of the European Ceramic Society, Vol. 27, pp. 2433-2444, 2007.
3. Tsuchinari, A., Osaki, H., Okamoto, H., and Yamamoto, T., Chrome-free brick, Harima Ceramic Co., Ltd, Sep 24, 1996.
4. اسلامی داشبلاغ، ح.، ولاشجردی، م.، سرپولکی، ح.، نقیزاده، ر. و باوندوندچالی، م.، "بررسی خواص و ویژگیهای دیرگدازهای منیزیت اسپینل هرسینیتی"، مجموعه مقالات ششمین کنگره سرامیک ایران، تهران، ص. 1-5 1386.
5. Nievoll, J., Guo, Z., and Shi, S., “Performance of Magnesia Hercynite Bricks in Large Chinese Cement Rotary Kilns”, RHI Bulletin, Vol. 3, pp. 15-17, 2006.
6. Bin, Y., Huazhi, G., and Houzhi, W., “In-Situ Synthesis of Periclase-Hercynite Material: Sintering Process and Properties, Cultivation Base for State Key Laboratory of Refractories and High-temperature Ceramics”, Wuhan University of Science and Technology, Vol. 1, pp. 81-89, 2009.
7. Bin, Y., Huazhi, G., Houzhi, W., and Hai, Y., “Properties of Periclase-Hercynite Brick for Cement Kiln”, The State Key Laboratory Breeding Base of Refractories and Ceramics, 2002.
8. Alan Castilloa ,G., Contrerasa, J., Puente-Ornelasa, R., Aguilar-Martínezb, J. A., Garcíaa, L., and Gómez, C., “Hercynite and Magnesium Aluminate Spinels Acting as a Ceramic Bonding in an Electrofused MgO–CaZrO3 Refractory Brick for the Cement Industry”, Ceramics International, Vol. 38, pp. 6769-6775, 2012.
9. Contreras, J. E., CastilloT, G. A., Rodrı´guez, E. A., Das, T. K., and Guzman, A. M., “Microstructure and Properties of Hercynite – Magnesia – Calcium Zirconate Refractory Mixtures”, Materials Characterization, Vol. 54, pp. 354-359, 2005.
10. Buchebner, G., Molinari, T., and Harmuth, H., “Magnesia-Hercynite Bricks, an Innovative, Burnt Basic Refractory”, Unified International Technical Conference on Refractories (UNITECR’99), pp.201-3, 1999.
11. Chen, J., and Yu, L., “Synthesis of Hercynite by Reaction Sintering”, Journal of the European Ceramic Society, Vol. 31, pp. 259-263, 2010.
13. Sako, E. Y., Braulio, M. A. L., and Pandolfelli, V. C., “The Corrosion and Microstructure Relationship for Cement-Bonded Spinel Refractory Castables”, Ceramics International, Vol. 38, pp. 2177-2185, 2012.
14. Grasset-Bourdel, R., Alzina, A., Huger, M., Gruber, D., Harmuth, H., and Chotard, T., “Influence of Thermal Damage Occurrence at Microstructural Scale on the Thermomechanical Behaviour of Magnesia-Spinel Refractories”, Journal of the European Ceramic Society, Vol. 32, pp. 989-999, 2012.
15. Luz, A. P., Tomba Martinez, A. G., Braulio, M. A. L., Liebske, C., and Pandolfelli, V. C., “Basic Slag Attack of Spinel-Containing Refractory Castables”, Ceramics International, Vol. 37, pp. 1935-1945, 2011.
16. ASTM C1171-96, Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories, ASTM International, West Conshohocken, PA, 2003.