Static and Dynamic Magnetic Properties of La0.8Sr0.2MnO3 Nanoparticles

Authors

Electroceram Research Center, Malek Ashtar University of Technology,

Abstract

In this research, nanoparticles of La0.8Sr0.2MnO3 with mean crystallite size of 20 nm have been prepared by sol gel method. The sample has been characterized by X-Ray Diffraction (XRD) using Rietveld refinement, Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The static magnetic properties such as saturation magnetization, effective magnetic moment and ferromagnetic phase fraction of the nanoparticles are determined by different techniques using magnetic hysteresis loop at room temperature. The magnetic dynamic properties of crystalls are studied by measuring AC magnetic susceptibility versus temperature at different frequencies. Néel-Brown, Vogel-Fulcher, critical slowing down models and empirical parameters are used to distinguish between superparamagnetic and superspin glass behaviour in the nanoaprticles. By fitting the experimental data with the models, relaxation time, critical view, magnetic anisotropy energy and effective magnetic anisotropy constant have been estimated. The obtained results support the presence of interacting superparamagnetic behaviour between magnetic nanoparticles of La0.8Sr0.2MnO3.
 

Keywords


1. Jönsson, P. E., “Superparamagnetism and Spin Glass Dynamics of Interacting Magnetic Nanoparticle Systems”, Advances in Chemical Physics, Vol. 128, pp. 191-248, 2004.
2. Gubin, SP., MyiLibrary, Magnetic nanoparticles, p. 483, Wiley Online Library; 2009.
3. Coey, J., Viret, M,. and Von Molnar, S., “Mixed-Valence Manganites”, Advances in Physics, Vol. 58, pp. 571-697, 2009.
4. Dagotto, E., Nanoscale Phase Separation and Colossal Magnetoresistance: the Physics of Manganites and Related Compounds, p. 451, Springer Verlag; 2003.
5. Dagotto, E., “Open Questions in CMR Manganites, Relevance of Clustered States and Analogies with other Compounds Including the Cuprates”, New Journal of Physics, Vol. 7, p. 67, 2005.
6. Haghiri-Gosnet, A., and Renard, J., “CMR Manganites: Physics, thin Films and Devices”, Journal of Physics D: Applied Physics, Vol. 36, pp. R127- R150, 2003.
7. Rao, C. N. R. and Raveau, B., Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, p. 351, World Scientific Publishing Co Inc., 1998.
8. Siwach, P., Singh, H., and Srivastava, O., “Low Field Magnetotransport in Manganites”, Journal of Physics: Condensed Matter, Vol. 20, p. 273201, 2008.
9. Rostamnejadi, A., “Dynamic Magnetic Properties of La0. 8Ag0.2MnO3”, Journal of Superconductivity and Novel Magnetism, Vol. 29, pp. 2119-2125, 2016.
10. Szewczyk, A., Szymczak, H., Wisniewski, A., Piotrowski, K., Kartaszynski, R., Kolesnik, S., Dabrowski, B., Koles´nik, S., and Bukowski, Z., “Magnetocaloric Effect in La1-xSrxMnO3 for x= 0.13 and 0.16”, Applied Physics Letters, Vol. 77, pp. 1026-1028, 2000.
11. Rostamnejadi, A., Venkatesan, M., Alaria, J., Boese, M., Kameli, P., Salamati, H., and Coey, J. M. D., “Conventional and Inverse Magnetocaloric Effects in La0. 45Sr0. 55MnO3 Nanoparticles”, Journal of Applied Physics, Vol. 110, p. 043905, 2011.
12. Rostamnejadi, A., Venkatesan, M., Kameli, P., Salamati, H., and Coey, J., “Magnetocaloric Effect in La0.67Sr0.33MnO3 Manganite Above Room Temperature”, Journal of Magnetism and Magnetic Materials, Vol. 323, pp. 2214-2218, 2011.
13. Fujishiro, H., Ikebe, M., and Konno, Y., “Phase Transition to Antiferromagnetic State in
La1-XSrXMnO3 (x < 0.5)”, Journal of the Physical Society of Japan, Vol. 67, pp. 1799-1800, 1998.
14. Millis, A. J., Shraiman, B. I., and Mueller, R., “Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1-xSrxMnO3”, Physical Review Letters, Vol. 77, pp. 175-178, 1996.
15. Chmaissem, O., Dabrowski, B., Kolesnik, S., Mais, J., Jorgensen, J. D., and Short, S., “Structural and Magnetic Phase Diagrams of La1-xSrxMnO3 and
Pr1-ySryMnO3”, Physical Review B, Vol. 67, p. 094431, 2003.
16. Szewczyk, A., Gutowska, M., and Dabrowski, B., “Specific Heat and Phase Diagram of Heavily Doped La1-xSrxMnO3 (0.45 ≤ x ≤ 1.0)”, Physical Review B, Vol. 72, p. 224429, 2005.
17. Li, R. W., Zhang, Z. R., Li, Q. A., Sun, J. R., Wang, G. J., Cheng, Z. H., Wang, Z. H., Zhang, S. Y, Han, B. S., and Shen, B. G., “Direct Observation of Phase Separation in La0.45Sr0.55MnO3”, Journal of Applied Physics, Vol. 92, p. 7404, 2002.
18. Wu, J., and Lin, J., “Study on the Phase Separation of La0. 7Sr0.3MnO3 Nanoparticles by Electron Magnetic Resonance”, Journal of Magnetism and Magnetic Materials, Vol. 304, pp. e7-e9, 2006.
19. Rostamnejadi, A., Salamati, H., Kameli, P., and Ahmadvand, H., “Superparamagnetic Behavior of La0.67Sr0.33MnO3 Nanoparticles Prepared via Sol-Gel Method”, Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 3126-3131, 2009.
20. Tsoi, G., Wenger, L., Senaratne, U., Tackett, R., Buc, E., Naik, R., Vaishnava, P. P., and Naik, V., “Memory Effects in a Superparamagnetic γ-Fe2O3 System”, Physical Review B, Vol. 72, p. 014445, 2005.
21. Sankar, C. R., and Joy, P., “Superspin Glass Behavior of a Nonstoichiometric Lanthanum Manganite LaMnO3.13”, Physical Review B, Vol. 72, p. 132407, 2005.
22. Bedanta, S., and Kleemann, W., “Supermagnetism”, Journal Physics D: Applied Physics, Vol. 42, p. 013001, 2009.
23. Cullity, B. D., and Stock, S., Elements of X-ray Diffraction, p. 659, Prentice Hall; 2002.
24. Li, K., Cheng, R., Wang, S., and Zhang, Y., “Infrared Transmittance Spectra of the Granular Perovskite”, Journal of Physics: Condensed Matter, Vol. 10, pp. 4315-4322, 1998.
25. Nagabhushana, B., Chakradhar, R. S., Ramesh, K., Prasad, V., Shivakumara, C., and Chandrappa, G., “Magnetoresistive Studies on Nanocrystalline La0.8Sr0.2MnO3+δ Manganite”, Physica B: Condensed Matter, Vol. 403, p. 3360, 2008.
26. Coey, J. M. D., Magnetism and Magnetic Materials, p. 633, Cambridge University Press; 2010.
27. Banerjee, B., “On a Generalised Approach to First and Second Order Magnetic Transitions”, Physics Letters, Vol. 12, p. 16, 1964.
28. Bean, C., and Rodbell, D., “Magnetic Disorder as a First-Order Phase Transformation”, Physical Review, Vol. 126, pp. 104-115, 1962.
29. Mira, J., Rivas, J., Rivadulla, F., Vázquez-Vázquez, C., and López-Quintela, M., “Change from First-to Second-Order Magnetic Phase Transition in
La2/3(Ca, Sr) 1/3 MnO3 Perovskites”, Physical Review B, Vol. 60, pp. 2998-3001, 1999.
30. Dormann, J., Fiorani, D., and Tronc, E., “Magnetic Relaxation in Fine-Particle Systems”, Advances in Chemical Physics, Vol. 98, pp. 283-494, 1997.
31. Dormann, J., Fiorani, D., and Tronc, E., “On the Models for Interparticle Interactions in Nanoparticle Assemblies: Comparison with Experimental Results”, Journal of Magnetism and Magnetic Materials, Vol. 202, No. 1, pp. 251-267, 1999.
32. Suzuki, Y., Hwang, H., Cheong, S., Siegrist, T., Van Dover, R., Asamitsu, A., and Tokura, Y., “Magnetic Anisotropy of Doped Manganite Thin Films and Crystals”, Journal of Applied Physics, Vol. 83, pp. 7064-7066, 1998.

ارتقاء امنیت وب با وف ایرانی