Two-Phase Rutile/Anatase TiO2 Nanoleafed Nanorod Arrays for Photoelectrochemical Applications

Authors

Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.

Abstract

Rutile-phase titanium dioxide nanorod arrays were prepared by the hydrothermal method. Then, anatase-phase nanoleaves were successfully synthesized on the nanorod arrays via mild aqueous chemistry. Nanorod arrays scanning electron microscopy revealed that the thin film is uniform and crack free and the average diameter and height of the nanorods are 90 nm and 2 µm, respectively. Furthermore, nanorods are vertical to the substrate surface and have desired coverage density due to the predeposition of TiO2 seed layer which leaded to decrease the surface roughness of the substrate. Nanoleafed nanorods scanning electron microscopy indicated that the nanoleaves were grown uniformly on the entire surface of nanorods and the specific surface area and roughness factor of those are significantly improved. Energy dispersive spectrums suggested that F- and Cl- ions are partially doped into TiO2 crystals. Raman and X-ray spectra confirmed the formation of anatase-phase nanoleaves on the rutile-phase nanorods. X-ray diffraction also indicated that the nanorod arrays are highly oriented with respect to the substrate surface. The diffused reflectancetransmittance data revealed the incident light was more efficiently harvested by the nanoleafed nanorod thin film and the values of energy gap are 2.78 and 2.82 eV for rutile TiO2 nanorod and rutile+anatase TiO2 nanoleafed nanorod thin films, respectively. Synthesized nanostructure, having improved charge separation and transfer (due to the presence of the surface anatase/rutile junctions), high specific surface area and light harvesting (due to the presence of the nanoleaves) and low band gap energy (due to the nonmetallic elements doping), is viable alternative to traditional single crystalline TiO2 nanorods for highly efficient photoelectrochemical applications.

Keywords


1. Fujishima, A., and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol. 238, pp. 37-38, 1972.
2. O’Regan, B., and Grätzel, M., “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films”, Nature, Vol. 353, pp. 737-740, 1991.
3. Liu, M., Qiu, X., Miyauchi, M. and Hashimoto, K., “Cu (II) Oxide Amorphous Nanoclusters Grafted Ti3+ Self-Doped TiO2: An Efficient Visible Light Photocatalyst”, Chemistry of Materials, Vol. 23, pp. 5282-5286, 2011.
4. Linsebigler, A. L., Lu, G., and Yates, J. T., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews, Vol. 95, pp. 735-758, 1995.
5. Wu, N. L., Wang, S. Y., and Rusakova, I., “Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides”, Science, Vol. 285, pp. 1375-1377, 1999.
6. Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., and Gratzel, M. G., “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, Journal of the American Chemical Society, Vol. 127, pp. 16835-16847, 2005.
7. Wang, P., Zakeeruddin, S. M., Moser, J. E., Humphry-Baker, R., Comte, P., Aranyos, V., Hagfeldt, A., Nazeeruddin, M. K., and Gratzel, M., “Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye‐Sensitized Solar Cells”, Advanced Materials, Vol. 16, pp. 1806-1811, 2004.
8. Tokudome, H., Yamada, Y., Sonezaki, S., Ishikawa, H., Bekki, M., Kanehira, K., and Miyauchi, M., “Photoelectrochemical Deoxyribonucleic Acid Sensing on a Nanostructured TiO2 Electrode”, Applied Physics Letters, Vol. 87, pp. 213901-213903, 2005.
9. Kumazawa, N., Islam, M. R., and Takeuchi, M., “Photoresponse of a Titanium Dioxide Chemical Sensor”, Journal of Electroanalytical Chemistry, Vol. 472, pp. 137-141, 1999.
10. Ferroni, M., Carotta, M. C., Guidi, V., Martinelli, G., Ronconi, F., Sacerdoti, M., and Traversa, E., “Preparation and Characterization of Nanosized Titania Sensing Film”, Sensors and Actuators B: Chemical, Vol. 77, pp. 163-166, 2001.
11. Zhang, Z., Wang, C. C., Zakaria, R., and Ying, J. Y., “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts”, The Journal of Physical Chemistry B, Vol. 102, pp.10871-10878, 1998.
12. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., “Light-Induced Amphiphilic Surfaces”, Nature, Vol. 388, pp. 431-432, 1997.
13. Choi, W., Termin, A., and Hoffmann, M. R., “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation Between Photoreactivity and Charge Carrier Recombination Dynamics”, The Journal of Physical Chemistry, Vol. 98, pp.13669-13679, 1994
14. Carlson, T. and Griffin, G. L., “Photooxidation of Methanol Using V2O5/TiO2 and MoO3/TiO2 Surface Oxide Monolayer Catalysts”, Journal of Physical Chemistry, Vol. 90, pp. 5896-5900, 1986.
15. Wagemaker, M., Kentgens, A. P. M., and Mulder, F. M., “Equilibrium Lithium Transport Between Nanocrystalline Phases in Intercalated TiO2 Anatase”, Nature, Vol. 418, pp. 397-399, 2002.
16. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., and Van Schalkwijk, W., “Nanostructured Materials for Advanced Energy Conversion and Storage Devices”, Nature Materials, Vol. 4, pp. 366-377, 2005.
17. Guo, Y. G., Hu, Y. S., and Maier, J., “Synthesis of Hierarchically Mesoporous Anatase Spheres and Their Application in Lithium Batteries”, Chemical Communications, Vol. 26, pp. 2783-2785, 2006.
18. Mishra, P. R., and Srivastava, O. N., “On the Synthesis, Characterization and Photocatalytic Applications of Nanostructured TiO2”, Bulletin of Materials Science, Vol. 31, pp. 545-550, 2008.
19. Roy, P., Berger, S., and Schmuki, P., “TiO2 Nanotubes: Synthesis and Applications”, Angewandte Chemie International Edition, Vol. 50, pp. 2904-2939, 2011.
20. Bernardini, C., Cappelletti, G., Dozzi, M. V., and Selli, E., “Photocatalytic Degradation of Organic Molecules in Water: Photoactivity and Reaction Paths in Relation to TiO2 Particles Features”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 211, pp. 185-192, 2010.
21. Puddu, V., Choi, H., Dionysiou, D. D., and Puma, G. L., “TiO2 Photocatalyst for Indoor Air Remediation: Influence of Crystallinity, Crystal Phase, and UV Radiation Intensity on Trichloroethylene Degradation”, Applied Catalysis B: Environmental, Vol. 94, pp. 211-218, 2010.
22. Sasaki, T., Ebina, Y., Tanaka, T., Harada, M., Watanabe, M., and Decher, G., “Layer-by-Layer Assembly of Titania Nanosheet/Polycation Composite Films”, Chemistry of Materials, Vol. 13, pp. 4661-4667, 2001.
23. Wu, J. J., and Yu, C. C., “Aligned TiO2 Nanorods and Nanowalls”, The Journal of Physical Chemistry B, Vol. 108, pp. 3377-3379, 2004.
24. Benjwal, P., De, B., and Kar, K. K., “1-D and 2-D Morphology of Metal Cation Co-Doped (Zn, Mn) TiO2 and Investigation of Their Photocatalytic Activity”, Applied Surface Science, Vol. 427, pp. 262-272, 2018.
25. Perathoner, S., Passalacqua, R., Centi, G., Su, D. S., and Weinberg, G., “Photoactive Titania Nanostructured Thin Films: Synthesis and Characteristics of Ordered Helical Nanocoil Array”, Catalysis Today, Vol. 122, pp. 3-13, 2007.
26. Zaki, A. H., El-Shafey, A., Moatmed, S. M., Abdelhay, R. A., Rashdan, E. F., Saleh, R. M., Abd-El Fatah, M., Tawfik, M. M., Esmat, M., and El-dek, S. I., “Morphology Transformation from Titanate Nanotubes to TiO2 Microspheres”, Materials Science in Semiconductor Processing, Vol. 75, pp. 10-17, 2018.
27. Ilie, A. G., Scarisoreanu, M., Dutu, E., Dumitrache, F., Banici, A. M., Fleaca, C. T., Vasile, E., and Mihailescu, I., “Study of Phase Development and Thermal Stability in as Synthesized TiO2 Nanoparticles by Laser Pyrolysis: Ethylene Uptake and Oxygen Enrichment”, Applied Surface Science, Vol. 427, pp. 798-806, 2018.
28. Fang, L., Wang, X., Wang, Z., Gong, Z., Jin, L., Li, J., Zhang, M., He, G., Jiang, X., and Sun, Z., “Heterostructured TiO2 Nanotree Arrays with Silver Quantum Dots Loading for Enhanced Photoelectrochemical Properties”, Journal of Alloys and Compounds, Vol. 730, pp. 110-118, 2018.
29. Wang, J., Zhang, T., Wang, D., Pan, R., Wang, Q., and Xia, H., “Improved Morphology and Photovoltaic Performance in TiO2 Nanorod Arrays Based Dye Sensitized Solar Cells by Using a Seed Layer”, Journal of Alloys and Compounds, Vol. 551, pp. 82-87, 2013.
30. Liu, B., and Aydil, E. S., “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells”, Journal of the American Chemical Society, Vol. 131, pp. 3985-3990, 2009.
31. Masuda, Y., Ohji, T., and Kato, K., “Multineedle TiO2 Nanostructures, Self-Assembled Surface Coatings, and Their Novel Properties”, Crystal Growth & Design, Vol. 10, pp. 913-922, 2009.
32. Pottier, A., Chanéac, C., Tronc, E., Mazerolles, L., and Jolivet, J. P., “Synthesis of Brookite TiO2 Nanoparticles by Thermolysis of TiCl4 in Strongly Acidic Aqueous Media”, Journal of Materials Chemistry, Vol. 11, pp. 1116-1121, 2001.
33. Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., and Ito, S., “A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer‐Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity”, Angewandte Chemie, Vol. 114, pp. 2935-2937, 2002.
34. Tang, H., Prasad, K., Sanjines, R., Schmid, P. E., and Levy, F., “Electrical and Optical Properties of TiO2 Anatase Thin Films”, Journal of Applied Physics, Vol. 75, pp. 2042-2047, 1994.
35. Tian, J., Gao, R., Zhang, Q., Zhang, S., Li, Y., Lan, J., Qu, X., and Cao, G., “Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film”, The Journal of Physical Chemistry C, Vol. 116, pp. 18655-18662, 2012.
36. Abd-Lefdil, M., Diaz, R., Bihri, H., Aouaj, M. A., and Rueda, F., “Preparation and Characterization of Sprayed FTO Thin Films”, The European Physical Journal-Applied Physics, Vol. 38, pp. 217-219, 2007.
37. Howard, C. J., Sabine, T. M., and Dickson, F. I. O. N. A., “Structural and Thermal Parameters for Rutile and Anatase”, Acta Crystallographica Section B: Structural Science, Vol. 47, pp. 462-468, 1991.
38. Cho, I. S., Chen, Z., Forman, A. J., Kim, D. R., Rao, P. M., Jaramillo, T. F., and Zheng, X., “Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production”, Nano Letters, Vol. 11, pp. 4978-4984, 2011.
39. Meng, L. J., and Dos Santos, M. P., “Investigations of Titanium Oxide Films Deposited by D.C. Reactive Magnetron Sputtering in Different Sputtering Pressures”, Thin Solid Films, Vol. 226, pp. 22-29, 1993.
40. Aarik, J., Aidla, A., Kiisler, A. A., Uustare, T., and Sammelselg, V., “Effect of Crystal Structure on Optical Properties of TiO2 Films Grown by Atomic Layer Deposition”, Thin Solid Films, Vol. 305, pp. 270-273, 1997.
41. Mardare, D., Tasca, M., Delibas, M., and Rusu, G. I., “On the Structural Properties and Optical Transmittance of TiO2 R.F. Sputtered Thin Films”, Applied Surface Science, Vol. 156, pp. 200-206, 2000.
42. Ting, C. C., Chen, S. Y., and Liu, D. M., “Structural Evolution and Optical Properties of TiO2 Thin Films Prepared by Thermal Oxidation of Sputtered Ti Films”, Journal of Applied Physics, Vol. 88, pp. 4628-4633, 2000.
43. Won, D. J., Wang, C. H., Jang, H. K., and Choi, D. J., “Effects of Thermally Induced Anatase-to-Rutile Phase Transition in MOCVD-Grown TiO2 Films on Structural and Optical Properties”, Applied Physics A: Materials Science & Processing, Vol. 73, pp. 595-600, 2001.

ارتقاء امنیت وب با وف ایرانی