1. Fujishima, A., and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol. 238, pp. 37-38, 1972.
2. O’Regan, B., and Grätzel, M., “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films”, Nature, Vol. 353, pp. 737-740, 1991.
3. Liu, M., Qiu, X., Miyauchi, M. and Hashimoto, K., “Cu (II) Oxide Amorphous Nanoclusters Grafted Ti3+ Self-Doped TiO2: An Efficient Visible Light Photocatalyst”, Chemistry of Materials, Vol. 23, pp. 5282-5286, 2011.
4. Linsebigler, A. L., Lu, G., and Yates, J. T., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews, Vol. 95, pp. 735-758, 1995.
5. Wu, N. L., Wang, S. Y., and Rusakova, I., “Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides”, Science, Vol. 285, pp. 1375-1377, 1999.
6. Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., and Gratzel, M. G., “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, Journal of the American Chemical Society, Vol. 127, pp. 16835-16847, 2005.
7. Wang, P., Zakeeruddin, S. M., Moser, J. E., Humphry-Baker, R., Comte, P., Aranyos, V., Hagfeldt, A., Nazeeruddin, M. K., and Gratzel, M., “Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye‐Sensitized Solar Cells”, Advanced Materials, Vol. 16, pp. 1806-1811, 2004.
8. Tokudome, H., Yamada, Y., Sonezaki, S., Ishikawa, H., Bekki, M., Kanehira, K., and Miyauchi, M., “Photoelectrochemical Deoxyribonucleic Acid Sensing on a Nanostructured TiO2 Electrode”, Applied Physics Letters, Vol. 87, pp. 213901-213903, 2005.
9. Kumazawa, N., Islam, M. R., and Takeuchi, M., “Photoresponse of a Titanium Dioxide Chemical Sensor”, Journal of Electroanalytical Chemistry, Vol. 472, pp. 137-141, 1999.
10. Ferroni, M., Carotta, M. C., Guidi, V., Martinelli, G., Ronconi, F., Sacerdoti, M., and Traversa, E., “Preparation and Characterization of Nanosized Titania Sensing Film”, Sensors and Actuators B: Chemical, Vol. 77, pp. 163-166, 2001.
11. Zhang, Z., Wang, C. C., Zakaria, R., and Ying, J. Y., “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts”, The Journal of Physical Chemistry B, Vol. 102, pp.10871-10878, 1998.
12. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., “Light-Induced Amphiphilic Surfaces”, Nature, Vol. 388, pp. 431-432, 1997.
13. Choi, W., Termin, A., and Hoffmann, M. R., “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation Between Photoreactivity and Charge Carrier Recombination Dynamics”, The Journal of Physical Chemistry, Vol. 98, pp.13669-13679, 1994
14. Carlson, T. and Griffin, G. L., “Photooxidation of Methanol Using V2O5/TiO2 and MoO3/TiO2 Surface Oxide Monolayer Catalysts”, Journal of Physical Chemistry, Vol. 90, pp. 5896-5900, 1986.
15. Wagemaker, M., Kentgens, A. P. M., and Mulder, F. M., “Equilibrium Lithium Transport Between Nanocrystalline Phases in Intercalated TiO2 Anatase”, Nature, Vol. 418, pp. 397-399, 2002.
16. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., and Van Schalkwijk, W., “Nanostructured Materials for Advanced Energy Conversion and Storage Devices”, Nature Materials, Vol. 4, pp. 366-377, 2005.
17. Guo, Y. G., Hu, Y. S., and Maier, J., “Synthesis of Hierarchically Mesoporous Anatase Spheres and Their Application in Lithium Batteries”, Chemical Communications, Vol. 26, pp. 2783-2785, 2006.
18. Mishra, P. R., and Srivastava, O. N., “On the Synthesis, Characterization and Photocatalytic Applications of Nanostructured TiO2”, Bulletin of Materials Science, Vol. 31, pp. 545-550, 2008.
19. Roy, P., Berger, S., and Schmuki, P., “TiO2 Nanotubes: Synthesis and Applications”, Angewandte Chemie International Edition, Vol. 50, pp. 2904-2939, 2011.
20. Bernardini, C., Cappelletti, G., Dozzi, M. V., and Selli, E., “Photocatalytic Degradation of Organic Molecules in Water: Photoactivity and Reaction Paths in Relation to TiO2 Particles Features”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 211, pp. 185-192, 2010.
21. Puddu, V., Choi, H., Dionysiou, D. D., and Puma, G. L., “TiO2 Photocatalyst for Indoor Air Remediation: Influence of Crystallinity, Crystal Phase, and UV Radiation Intensity on Trichloroethylene Degradation”, Applied Catalysis B: Environmental, Vol. 94, pp. 211-218, 2010.
22. Sasaki, T., Ebina, Y., Tanaka, T., Harada, M., Watanabe, M., and Decher, G., “Layer-by-Layer Assembly of Titania Nanosheet/Polycation Composite Films”, Chemistry of Materials, Vol. 13, pp. 4661-4667, 2001.
23. Wu, J. J., and Yu, C. C., “Aligned TiO2 Nanorods and Nanowalls”, The Journal of Physical Chemistry B, Vol. 108, pp. 3377-3379, 2004.
24. Benjwal, P., De, B., and Kar, K. K., “1-D and 2-D Morphology of Metal Cation Co-Doped (Zn, Mn) TiO2 and Investigation of Their Photocatalytic Activity”, Applied Surface Science, Vol. 427, pp. 262-272, 2018.
25. Perathoner, S., Passalacqua, R., Centi, G., Su, D. S., and Weinberg, G., “Photoactive Titania Nanostructured Thin Films: Synthesis and Characteristics of Ordered Helical Nanocoil Array”, Catalysis Today, Vol. 122, pp. 3-13, 2007.
26. Zaki, A. H., El-Shafey, A., Moatmed, S. M., Abdelhay, R. A., Rashdan, E. F., Saleh, R. M., Abd-El Fatah, M., Tawfik, M. M., Esmat, M., and El-dek, S. I., “Morphology Transformation from Titanate Nanotubes to TiO2 Microspheres”, Materials Science in Semiconductor Processing, Vol. 75, pp. 10-17, 2018.
27. Ilie, A. G., Scarisoreanu, M., Dutu, E., Dumitrache, F., Banici, A. M., Fleaca, C. T., Vasile, E., and Mihailescu, I., “Study of Phase Development and Thermal Stability in as Synthesized TiO2 Nanoparticles by Laser Pyrolysis: Ethylene Uptake and Oxygen Enrichment”, Applied Surface Science, Vol. 427, pp. 798-806, 2018.
28. Fang, L., Wang, X., Wang, Z., Gong, Z., Jin, L., Li, J., Zhang, M., He, G., Jiang, X., and Sun, Z., “Heterostructured TiO2 Nanotree Arrays with Silver Quantum Dots Loading for Enhanced Photoelectrochemical Properties”, Journal of Alloys and Compounds, Vol. 730, pp. 110-118, 2018.
29. Wang, J., Zhang, T., Wang, D., Pan, R., Wang, Q., and Xia, H., “Improved Morphology and Photovoltaic Performance in TiO2 Nanorod Arrays Based Dye Sensitized Solar Cells by Using a Seed Layer”, Journal of Alloys and Compounds, Vol. 551, pp. 82-87, 2013.
30. Liu, B., and Aydil, E. S., “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells”, Journal of the American Chemical Society, Vol. 131, pp. 3985-3990, 2009.
31. Masuda, Y., Ohji, T., and Kato, K., “Multineedle TiO2 Nanostructures, Self-Assembled Surface Coatings, and Their Novel Properties”, Crystal Growth & Design, Vol. 10, pp. 913-922, 2009.
32. Pottier, A., Chanéac, C., Tronc, E., Mazerolles, L., and Jolivet, J. P., “Synthesis of Brookite TiO2 Nanoparticles by Thermolysis of TiCl4 in Strongly Acidic Aqueous Media”, Journal of Materials Chemistry, Vol. 11, pp. 1116-1121, 2001.
33. Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., and Ito, S., “A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer‐Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity”, Angewandte Chemie, Vol. 114, pp. 2935-2937, 2002.
34. Tang, H., Prasad, K., Sanjines, R., Schmid, P. E., and Levy, F., “Electrical and Optical Properties of TiO2 Anatase Thin Films”, Journal of Applied Physics, Vol. 75, pp. 2042-2047, 1994.
35. Tian, J., Gao, R., Zhang, Q., Zhang, S., Li, Y., Lan, J., Qu, X., and Cao, G., “Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film”, The Journal of Physical Chemistry C, Vol. 116, pp. 18655-18662, 2012.
36. Abd-Lefdil, M., Diaz, R., Bihri, H., Aouaj, M. A., and Rueda, F., “Preparation and Characterization of Sprayed FTO Thin Films”, The European Physical Journal-Applied Physics, Vol. 38, pp. 217-219, 2007.
37. Howard, C. J., Sabine, T. M., and Dickson, F. I. O. N. A., “Structural and Thermal Parameters for Rutile and Anatase”, Acta Crystallographica Section B: Structural Science, Vol. 47, pp. 462-468, 1991.
38. Cho, I. S., Chen, Z., Forman, A. J., Kim, D. R., Rao, P. M., Jaramillo, T. F., and Zheng, X., “Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production”, Nano Letters, Vol. 11, pp. 4978-4984, 2011.
39. Meng, L. J., and Dos Santos, M. P., “Investigations of Titanium Oxide Films Deposited by D.C. Reactive Magnetron Sputtering in Different Sputtering Pressures”, Thin Solid Films, Vol. 226, pp. 22-29, 1993.
40. Aarik, J., Aidla, A., Kiisler, A. A., Uustare, T., and Sammelselg, V., “Effect of Crystal Structure on Optical Properties of TiO2 Films Grown by Atomic Layer Deposition”, Thin Solid Films, Vol. 305, pp. 270-273, 1997.
41. Mardare, D., Tasca, M., Delibas, M., and Rusu, G. I., “On the Structural Properties and Optical Transmittance of TiO2 R.F. Sputtered Thin Films”, Applied Surface Science, Vol. 156, pp. 200-206, 2000.
42. Ting, C. C., Chen, S. Y., and Liu, D. M., “Structural Evolution and Optical Properties of TiO2 Thin Films Prepared by Thermal Oxidation of Sputtered Ti Films”, Journal of Applied Physics, Vol. 88, pp. 4628-4633, 2000.
43. Won, D. J., Wang, C. H., Jang, H. K., and Choi, D. J., “Effects of Thermally Induced Anatase-to-Rutile Phase Transition in MOCVD-Grown TiO2 Films on Structural and Optical Properties”, Applied Physics A: Materials Science & Processing, Vol. 73, pp. 595-600, 2001.