1. Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., and Xiao, Y., “Copper-containing Mesoporous Bioactive Glass Scaffolds with Multifunctional Properties of Angiogenesis Capacity, Osteostimulation and Antibacterial Activity”, Biomaterials, Vol. 34, pp. 422-433, 2013.
2. Bi, L., Rahaman, M. N., Day, D. E., Brown, Z., Samujh, C., Liu, X., Mohammadkhah, A., Dusevich, V., Eick, J. D., and Bonewald, L. F., “Effect of Bioactive Borate Glass Microstructure on Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in a Rat Calvarial Defect Model”, Acta Biomaterialia, Vol. 9, No. 8, pp. 8015-8026, 2013.
3. Zhao, S., Zhang, J., Zhu, M., Zhang, Y., Liu, Z., Tao, C., Zhu, Y., and Zhang, C., “Three-dimensional Printed Strontium-containing Mesoporous Bioactive Glass Scaffolds for Repairing Rat Critical-sized Calvarial Defects”, Acta Biomaterialia, Vol. 12, pp. 270-280, 2015.
4. Erol, M., Özyuğuran, A., Özarpat, Ö., and Küçükbayrak, S., “3D Composite Scaffolds using Strontium Containing Bioactive Glasses”, Journal of the European Ceramic Society, Vol. 32, No. 11, pp. 2747-2755, 2012.
5. Yunos, D. M., Ahmad, Z., and Boccaccini, A. R., “Fabrication and Characterization of Electrospun Poly‐DL‐lactide (PDLLA) Fibrous Coatings on 45S5 Bioglass® Substrates for Bone Tissue Engineering Applications”, Journal of Chemical Technology & Biotechnology, Vol. 85, No. 6, pp.768-774, 2010.
6. Lin, H. M., Lin, Y. H., and Hsu, F. Y., “Preparation and Characterization of Mesoporous Bioactive Glass/Polycaprolactone Nanofibrous Matrix for Bone Tissues Engineering”, Journal of Materials Science: Materials in Medicine, Vol. 23, No. 11, pp. 2619-2630, 2012.
7. Gao, C., Gao, Q., Li, Y., Rahaman, M. N., Teramoto, A., and Abe, K., “In Vitro Evaluation of Electrospun Gelatin‐bioactive Glass Hybrid Scaffolds for Bone Regeneration”, Journal of Applied Polymer Science, Vol. 127, No. 4, pp. 2588-2599, 2013.
8. Liu, X., Smith, L. A., Hu, J., and Ma, P. X., “Biomimetic Nanofibrous Gelatin/Apatite Composite Scaffolds for Bone Tissue Engineering”, Biomaterials, Vol. 30, No. 12, pp. 2252-2258, 2009.
9. Rajzer, I., Grzybowska-Pietras, J., and Janicki, J., “Fabrication of Bioactive Carbon Nonwovens for Bone Tissue Regeneration”, Fibres & Textiles in Eastern Europe, Vol. 1, No. 84, pp. 66-72, 2011.
10. Xie, J., Blough, E. R., and Wang, C. H., “Submicron Bioactive Glass Tubes for Bone Tissue Engineering”, Acta Biomaterialia, Vol. 8, No. 2, pp. 811-819, 2012.
11. Gómez-Lizárraga, K. K., Flores-Morales, C., Del Prado-Audelo, M. L., Álvarez-Pérez, M. A., Piña-Barba, M. C., and Escobedo, C., “Polycaprolactone and Polycaprolactone/Ceramic-based 3D-bioplotted Porous Scaffolds for Bone Regeneration: A Comparative Study”, Materials Science and Engineering: C, Vol. 79, pp. 326-335, 2017.
12. Ghorbani, F. M., Kaffashi, B., Shokrollahi, P., Akhlaghi, S., and Hedenqvist, M. S., “Effect of Hydroxyapatite Nano-particles on Morphology, Rheology and Thermal Behavior of Poly (Caprolactone)/Chitosan Blends”, Materials Science and Engineering: C, Vol. 59, pp. 980-989, 2016.
13. Yang, F., Wolke, J. G. C., and Jansen, J. A., “Biomimetic Calcium Phosphate Coating on Electrospun poly (ɛ-Caprolactone) Scaffolds for Bone Tissue Engineering”, Chemical Engineering Journal, Vol. 137, No. 1, pp. 154-161, 2008.
14. Kim, G-M., Kim, H. T., Le, S. M., Giannitelli, Y. J. L., Alberto, R., and Marcella T., “Electrospinning of PCL/PVP Blends for Tissue Engineering Scaffolds”, Journal of Materials Science: Materials in Medicine, Vol. 24, No. 6 , pp. 1425-1442, 2013.
15. Kim G-M., Le, K. H., Giannitelli, S. M., Lee, Y. J., Rainer, A., and Trombetta, M., “An Improved Hydrophilicity via Electrospinning for Enhanced Cell Attachment and Proliferation”, Journal of Biomedical Materials Research Biomaterials, Vol. 78, No. 2 , pp. 283-290, 2006.
16. Maheshwari, S. U., Samuel, V. K., and Nagiah, N., “Fabrication and Evaluation of (PVA/HAp/PCL) Bilayer Composites as Potential Scaffolds for Bone Tissue Regeneration Application”, Ceramics International, Vol. 40, No. 6, pp. 8469-8477, 2014.
17. Mkhabela, V., and Ray, S. S., “Biodegradation and Bioresorption of Poly (ɛ-Caprolactone) Nanocomposite Scaffolds”, International Journal of Biological Macromolecules, Vol. 79, pp. 186-192, 2015.
18. Mohan, N., and Nair, P. D., “Polyvinyl Alcohol‐poly (Caprolactone) Semi IPN Scaffold with Implication for Cartilage Tissue Engineering”, Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 84, No. 2, pp. 584-594, 2008.
19. Zegzula, H. D., Buck, D. C., Brekke, J., Wozney, J. M., and Hollinger, J. O., “Bone Formation with Use of RHBMP-2 (Recombinant Human Bone Morphogenetic Protein-2)”, Journal of Bone & Joint Surgery, Vol. 79, No. 12, pp. 1778-1790, 1997.
20. Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R., “Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering”, Biomaterials, Vol. 27, No. 18, pp. 3413-3431, 2006.
21. Befort, C. A., Nazir, N., and Perri, M. G., “Prevalence of Obesity Among Adults from Rural and Urban Areas of the United States: findings from NHANES (2005‐2008)”, The Journal of Rural Health, Vol. 28, No. 4, pp. 392-397, 2012.
22. Amiraliyan, N., Nouri, M., and Kish, M. H., “Structural Characterization and Mechanical Properties of Electrospun Silk Fibroin Nanofiber Mats”, Polymer Science Series A, Vol. 52, No. 4, pp. 407-412, 2010.