1. Kuc, A., Zibouche, N., and Heine, T., “How Does Quantum Confinement Influence the Electronic Structure of Transition Metal Sulfides TmS2”, Physical. Review. B, Vol. 83, p. 245213, 2011.
2. Liu, B., Han, Y. H., Gao, C. X., Yanzhang, M., Gang, P., Baojia, W., Cailong, L., Yue, W., Tingjing, H., Xiaoyan, C., Wanbin, R., Yan, L., Ningning, S., Hongwu, L., and Guangtian, Z., “Pressure Induced Semiconductor- Semimetal Transition in WSe2”, Journal of Physical Chemistry C, Vol. 114, pp. 14251-14254, 2010.
3. Brien, M. O., Lee, K., Morrish, R., Berner, N. C., McEvoy, N., Wolden, C. A., and Duesberg, G. S., “Plasma Assisted Synthesis of WS2 for Gas Sensing Applications”, Chemical Physics Letters, Vol. 615, pp. 6-10, 2014.
4. Prouzet, E., Heising, J., and Kanatzidis, M. G., “Structure of Restacked and Pillared WS2: An X-ray Absorption Study”, Chemistry of Materials, Vol. 15, pp. 412-418, 2003.
5. Heising, J., and Kanatzidis, M. G., “Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography”, Journal of the American Chemical Society, Vol. 121, pp. 638-643, 1999.
6. Gutiérrez, H. R., Perea-López, N., Elías, A. L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V. H., Terrones, H., and Terrones, M., “Extraordinary Room-Temperature Photoluminescence in WS2 Monolayers”, Nano Letters, Vol. 13, No. 8, pp. 3447-3454, 2013.
7. Carvalho, A., Ribeiro, R. M., and Castro Neto, A. H., “Band Nesting and the Optical Response of Two-Dimensional Semiconducting Transition Metal Dichalcogenides”, Physical. Review, Vol. 88, p. 115205, 2013.
8. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M., “Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials”, Journal of Physics: Condensed Matter, Vol. 21, pp. 395502-395536, 2009.
9. Dresselhaus, M., “Optical Properties of Solids”, Proceedings of the International School of Physics, Enrico Fermi, Academic Press, NY, 1966.
10. Ahuja, U., Dashora, A., Tiwari, H., Kothari, D. C., and Venugopalan, K., “Electronic and Optical Properties of MoS2-WS2 Multi-Layers: First Principles Study”, Computational Materials Science, Vol. 92, pp. 451-456, 2014.
11. Koch, S. W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific Publishing Company Incorporated, 1994.
12. Ballif, C., Regula, M., and Levy, F., “Optical and Electrical Properties of Semiconducting WS2 Thin Films: From Macroscopic to Local Probe Measurements”, Solar Energy Materials & Solar Cells, Vol. 57, pp. 189-207, 1999.
13. Bhattacharyya, S., and Singh, A. K., “Semiconductor-Metal Transition in Semiconducting Bilayer Sheets of Transition Metal Dichalcogenides”, Physical. Review. B, Vol. 86, p. 075454, 2012.
14. Frey, G. L., Tenne, R., Matthews, M. J., Dresselhaus, M. S., and Dresselhaus, G., “Optical Properties of MS2 (M = Mo, W) Inorganic Fullerene-Like and Nanotube Material Optical Absorption and Resonance Raman Measurements”, Journal of Materials Research, Vol. 13, No. 9, pp. 2412-2417, 1998.
15. Ambrosch-Draxl, C., and Sofo, J. O., “Linear Optical Properties of Solids Within the Full- Potential Linearized Augmented Planewave Method”, Computer Physics Communications, Vol. 175, No. 1, pp. 1-14, 2006.
16. Zhang, H., Li, X. B., and Liu, L. M., “Tunable Electronic and Magnetic Properties of WS2 Nanoribbons”, Journal of Applied Physics, Vol. 114, p. 093710, 2013.