1. Drewett, R., “Review of Some Aspects Concerning the Formation of Metallic Diffusion Coatings on Ferrous Metals”, Corrosion Science, Vol. 9, pp. 823-847, 1969.
2. Goward, G. W., and Seigle, L. L., Diffusion Coatings for Gas Turbine Engine Hot Section Parts, in: ASM Hand book, Vol. 5, Surface Engineering, ASM Int., Materials Park, Ohio, p. 611. 1994.
3. Panat, R., Zhang S., and Hsia, K. J., “Bond Coat Surface Rumpling in Thermal Barrier Coatings”, Acta Materialia, Vol. 51, pp. 239-249, 2003.
4. Godlewski, K., and Godlewska, E., “Effect of Chromium on the Protective Properties of Aluminide Coatings”, Oxidation of Metals, Vol. 26, pp. 125-138, 1986.
5. Shirvani, K., Saremi, M., Nishikata, A., and Tsuru, T., “The Role of Silicon on Microstructure and High Temperature Performance of Aluminide Coating on Superalloy In-738LC”, Materials Transactions, Vol. 43, pp. 2622-2628, 2002.
6. Pedraza, F., Kennedy, A. D., Kopecek, J., and Moretto, P., “Investigation of the Microstructure of Platinum-Modified Aluminide Coatings”, Surface and Coatings Technology, Vol. 200, pp. 4032-4039, 2006.
7. Li, M. J., Sun, X. F., Guan, H. R., Jiang, X. X., and Hu, Z. Q., “Effect of Palladium Incorporation on Isothermal Oxidation Behavior of Aluminide Coatings”, Oxidation of Metals, Vol. 59, pp. 483-502, 2003.
8. Jedlinski, J., Godlewski, K., and Mrowec, S., “The Influence of Implanted Yttrium and Cerium on the Protective Properties of a β-NiAl Coating on a Nickel-Base Superalloy”, Materials Science and Engineering, Vol. A121, pp. 539-543, 1989.
9. Peng, X., Li, T., and Pan, W. P., “Oxidation of A La2O3-Modified Aluminide Coating”, Scripta Materialia, Vol. 44, pp. 1033-1038, 2001.
10. Young Kim, K., Ho Jun, J., and Kee Lee, J., “High Temperature Corrosion Study on Yttrium Modified Aluminide Coatings on IN 713C”, Journal De Physique IV, Vol. 3, pp. 521-529, 1993.
11. Fukumoto, M., Suzuki, T., Hara, M., and Narita, T., “Effect of the Electrodeposition Temperature on the Cyclic-Oxidation Resistance of Ni Aluminide Containing Zr Formed by Molten-Salt Electrodeposition”, Materials Transactions, Vol. 50, pp. 335-340, 2009.
12. Hara, M., Matsuda, Y., Fukumoto, M., and Narita, T., “Formation of Ni-Aluminide Coating Containing Hf by Molten-Salt Electrodeposition and Cyclic-Oxidation Resistance”, Oxidation of Metals, Vol. 70, pp. 295-306, 2008.
13. Shahriari, F., Ashrafizadeh, F., and Saatchi, A., “Microstructural Analysis and Growth Mechanism of Single-Step Aluminum-Titanium Diffusion Coatings on a Nickel-Based Substrate”, Surface and Coatings Technology, Vol. 210, pp. 97-102, 2012.
14. Kuppusamia, P., and Murakami, H., “A Comparative Study of Cyclic Oxidized Ir Aluminide and Aluminized Nickel Base Single Crystal Superalloy”, Surface and Coatings Technology, Vol. 186, pp. 377-388, 2004.
15. Xiang, Z. D., and Datta, P. K., “Formation of HF- and W-Modified Aluminide Coatings on Nickel-Base Superalloys by the Pack Cementation Process”, Materials Science and Engineering, Vol. A363, pp. 185-192, 2003.
16. Bose, S., High Temperature Coatings, Elsevier Science & Technology Books, p. 88, 2007.
17. Nicholls, J. R., Long, K. A., and Simms, N. J., Diffusion Coatings, In: Shreir’s Corrosion, Elsevier, pp. 2532-2555, 2010.
18. Naumenko, D., Pint, B. A., and Quadakkers, W. J., “Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer”, Oxidation of Metals, Vol. 86, pp. 1-43, 2016.
19. Bacos, M. -P., Dorvaux, J. -M., Landais, S., Lavigne, O., Mévrel, R., Poulain, M., Rio, C., and Vidal-Sétif, M. -H., “10 Years-Activities at Onera on Advanced Thermal Barrier Coatings”, Aerospacelab, pp. 1-14, 2011.
20. “Alloy IN-738 Technical Data”, The International Nickel Co., Inc., 15C1-81 5789, 1981.
21. Dini, J. W., Electrodeposition: The Materials Science of Coatings and Substrates, Noyes Publications, Westwood, New Jersey, USA, p. 59, 1993.
22. Goward, G. W., and Boone, D. H., “Mechanisms of Formation of Diffusion Aluminide Coatings on Nickel-Base Superalloys”, Oxidation of Metals, Vol. 3, pp. 475-495, 1971.
23. Taylor, D., “Further Studies on the Nickel-Aluminum System. I. The β-NiAl and δ-Ni2Al3 Phase fields”, Journal of Applied Crystallography, Vol. 5, pp. 201-209, 1972.
24. Sen, R., Das, S., and Das, K., “Synthesis and Properties of Pulse Electrodeposited Ni-CeO2 Nanocomposite”, Metallurgical and Materials Transactions, Vol. 43A, pp. 3809-3823, 2012.
25. Zagula-Yavorska, M., Sieniawski, J., and Romanowska, J., “Oxidation Behaviour of Zirconium-Doped NiAl Coatings Deposited on Pure Nickel”, Archive of Materials Science and Engineering, Vol. 58, pp. 250-254, 2012.
26. Zare Mohazabie, M. S., and Shahriari Nogorani, F., “The Addition of Zirconium to Aluminide Coatings: The Effect of the Aluminide Growth Mode”, Surface and Coatings Technology, Vol. 378, 2019. doi: https://doi.org/10.1016/j.surfcoat.2019.1250.
27. Angenete, J., Stiller, K., and Langer, V., “Oxidation of Simple and Pt-Modified Aluminide Diffusion Coatings on Ni-Base Superalloys-I. Oxide Scale Microstructure”, Oxidation of Metals, Vol. 60, pp. 47-82, 2003.
28. Donachie, M. J., and Donachie, S. J., Superalloys, A Technical Guide, 2nd Edition, P. 29, ASM International, 2002.
29. Zhou, Y., Zhao, X., Zhao, C., Hao, W., Wang, X., and Xiao, P., “The Oxidation Performance for Zr-Doped Nickel Aluminide Coating by Composite Electrodepositing and Pack Cementation”, Corrosion Science, Vol. 123, pp. 103-115, 2017.
30. Klumpes, R., Marée, C. H. M., Schramm, E., and de Wit, J. H. W., “The Influence of Chromium on the Oxidation of Beta-NiAl at 1000°C”, Materials and Corrosion, Vol. 47, No. 11, pp. 619-624, 1996.