Effect of Neodymium Dopping on Morphology, Phase and Magnetic Properties of Ni0.7Zn0.3NdxFe2-xO4 Ferrite Nanoparticles Synthesized by Complexing Sol-Gel Method

Authors

Department of Materials Engineering, Malek Ashtar University of Technology, P.O. Box 83145/115, Shahin Shahr, Isfahan, Iran.

Abstract

The purpose of this study was to evaluate phase changes and magnetic properties of neodymium doped Ni0.7Zn0.3NdxFe2-xO4 (x = 0, 0.01, 0.03, 0.05, 0.07, 0.10) nanoparticles synthesized by complexing sol-gel method. In this method, triethanolamine (TEA) acted as both a gelling agent and a chelating agent. Samples were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDX). XRD patterns of all synthesized samples revealed the formation of a spinel ferrite phase. Magnetic evaluation of the specimens showed that the Nd0.01 doped sample with a quasi-spherical morphology and particle size of about 60 nm has the highest saturation magnetization of 50 emu/g and coercive force of 103 Oe.

Keywords


1. Buschow, K. H. J., and de Boer, F. R., Physics of Magnetism and Magnetic Materials, Kluwer Academic, New York, 2003.
2. Goldman, A., Modem Ferrite Technology, 2rd ed., Springer, 1987.
3. Cullity, B. D., and Graham, C. D., Introduction to Magnetic Materials, 2rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
4. Mathew, D. S., and Juang, R. Sh., “An Overview of the Structure and Magnetism of Spinel Ferrite Nanoparticles and Their Synthesis in Microemulsions”, Chemical Engineering Journal, Vol. 129, pp. 51-65, 2007.
5. Zhang, C. F., Zhong, X. C., Yu, H. Y., Liu, Z. W., and Zeng, D. C., “Effects of Cobalt Doping on the Microstructure and Magnetic Properties of Mn–Zn Ferrites Prepared by the Co-Precipitation Method”, Physica B: Condensed Matter, Vol. 404, pp. 2327-2331, 2009.
6. Meng, Y. Y., Liu, Z. W., Dai, H. C., Yu, H. Y., Zeng, D. C., Shukla, S., and Ramanujan, R. V., “Structure and Magnetic Properties of Mn (Zn) Fe2−xRExO4 Ferrite Nano-Powders Synthesized by Co-Precipitation and Refluxing Method”, Powder Technology, Vol. 229 , pp. 270-275, 2012.
7. Deraz, N. M., “Size and Crystallinity-Dependent Magnetic Properties of Copper Ferrite Nano-Particles”, Journal of Alloys and Compounds, Vol. 501, pp. 317-325, 2010.
8. Viswanath, I. K., Murthy, Y. L. N., Tata, K. R., and Singh, R., “Synthesis and Characterization of Nano Ferrites by Citrate Gel Method”, International Journal of Chemical Sciences, Vol. 11, pp. 64-72, 2013.
9. Meskin, P. E., Ivanov, V. K., Barantchikov, A. E., Churagulov, B. R., and Tretyakov, Y. D., “Ultrasonically Assisted Hydrothermal Synthesis of
Nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 Powders”, Ultrasonics Sonochemistry, Vol. 13, pp. 47-53, 2013.
10. Yan, W., Jiang, W., Zhang, Q., Li, Y., and Wang, H., “Structure and Magnetic Properties of Nickel-Zinc Ferrite Microspheres Synthesized by Solvothermal Method”, Materials Science and Engineering: B, Vol. 171, pp. 144-148, 2010.
11. Thakur, S. C., and Singh. M., “Structural and Magnetic Properties of Nano Nickel-Zinc Ferrite Synthesized by Reverse Micelle Technique”, Journal of Magnetism and Magnetic Materials, Vol. 321, pp. 1-7, 2009.
12. Velmurugan, K., Venkatachalapathy, V. S. K., and Sendhilnathan, S., “Synthesis of Nickel Zinc Iron Nanoparticles by Coprecipitation Technique”, Materials Research, Vol. 13, pp. 299-303, 2010.
13. Liu, X. M., and Gao, W. L., “Preparation and Magnetic Properties of NiFe2O4 Nanoparticles by Modified Pechini Method”, Materials and Manufacturing Processes, Vol. 27, pp. 905-909, 2012.
14. Sakka, S., and Kozuka, H., Handbook of Sol-Gel Science and Technology Processing, Characterization and Applications, 2rd ed., Kluwer Academic Publishers, 2008.
15. Tebble, R. S., and Craik, D. J., Magntic Materials, Wiley-Interscience, New York, 1969.
16. Gabal, M. A., and Bayoumy, W. A., “Effect of Composition on Structural and Magnetic Properties of Nanocrystalline Ni0.8-xZn0.2MgxFe2O4 Ferrite”, Polyhedron, Vol. 29, pp. 2569-2573, 2010.
17. Fu, Y. P., Lin, C. H., and Liu, Ch. W., “Preparation and Magnetic Properties of Ni0.25Cu0.25Zn0.5 Ferrite from Microwave-Induced Combustion”, Journal of Magnetism and Magnetic Materials, Vol. 283, pp. 59-64, 2004.
18. Borhan, A. I., Hulea, V., Iordan, A. R., and Palamaru, M. N., “Cr3+ and Al3+ Co-Substituted Zinc Ferrite: Structural Analysis, Magnetic and Electrical Properties”, Polyhedron, Vol. 70, pp. 110-118, 2014.
19. Hua, S., Huai-wu, Z., Xiao-li, T., and Yu-lan, J., “Microstructure and Magnetic Properties of Ni-Zn Ferrites Doped with MnO2”, Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 109-113, 2011.
20. Zibao, J., Yao, Zh., Zhou, J., Qian, K., Lei, Y., Wei, B., and Chen, W., “Enhanced Microwave Absorption Properties of Nd-doped NiZn Ferrite/Polyaniline Nanocomposites”, Ceramics International, Vol. 46, No. 16, pp. 25405-25414, 2020.
21. Loghman-Estarki, M. R., Torkian, S., Rastabi, R. A., and Ghasemi, A., “Effect of Annealing Temperature and Copper Mole Ratio on the Morphology, Structure and Magnetic Properties of
Mg0.5− xCuxZn0.5Fe2O4 Nanoparticles Prepared by the Modified Pechini Method”, Journal of Magnetism and Magnetic Materials, Vol. 442, pp. 163-175, 2017.
22. Cullity, B. D., Elements of X-Ray Diffraction, 3rd Ed., Addison-Wesley Publishing Company, 1956.
23. Shokrollahi, H., “Magnetic Properties and Densification of Manganese-Zinc Soft Ferrites (Mn1-xZnxFe2O4) Doped with Low Melting Point Oxides”, Journal of Magnetism and Magnetic Materials, Vol. 320, pp. 463-474, 2008.
24. Bazuev, G. V., Gyrdasova, O. I., Novikov, S. I., and Kuznetsov, A. Y., “Synthesis, Structure, and Magnetic Properties of Rare-Earth-Doped Ni0.75Zn0.25Fe2O4 Nickel Zinc Ferrite”, Inorganic Materials, Vol. 52, pp. 932-938, 2016.
25. Sutka, A., Santa, L., Gundars, M., Arturs, P., Inta, V., and Limons, T., A Comparative Study of Ni0.7Zn0.3Fe2O4 Obtained by Sol-Gel Autocombustion and Flash Combustion Methods. In: IOP Conference Series, Publication Edition Name 25, 2011.
26. Chengliang, H., Zhu, D., Wu, H., Li, Y., Cheng, L., and Hu, K., “TEA Controllable Preparation of Magnetite Nanoparticles (Fe3O4 NPs) with Excellent Magnetic Properties”, Journal of Magnetism and Magnetic Materials, Vol. 408, pp. 213-216, 2016.
27. Tian, X., Wang, J., Wu, Ch., Meng, F., Shi, Zh., Lian, J., Feng, J., and Meng, J., “Novel Complex-Coprecipitation Route to form High Quality Triethanolamine-Coated Fe3O4 Nanocrystals: Their High Saturation Magnetizations and Excellent Water Treatment Properties”, CrystEngComm , Vol. 14, No. 18, pp. 5741-5744, 2012.
28. Şabikoğlu, İ., Paralı, L., Malina, O., Novak, P., Kaslik, J., Tucek, J., and Schneeweiss, O. , “The effect of Neodymium Substitution on the Structural and Magnetic Properties of Nickel Ferrite”, Progress in Natural Science: Materials International, Vol. 2, pp. 215-221, 2015.
29. Mousavi, S. F., Davar, F., and Loghman-Estarki, M. R., “Controllable Synthesis of ZnO Nanoflowers by the Modifed Sol-Gel Method”, Journal of Materials Science: Materials in Electronics, Vol. 27, No. 12, pp. 12985-1295, 2016.
30. Meng, Y. Y., Liu, Z. W., Dai, H. C., Yu, H. Y., Zeng, D. C., Shukla, S., and Ramanujan, R. V., “Structure and Magnetic Properties of Mn(Zn)Fe2− xRExO4 Ferrite Nano-Powders Synthesized by Co-Precipitation and Refluxing Method”, Powder Technology, Vol. 229, pp. 270-275, 2012.
31. Wu, X., Wen, Ch., Wenwei W., Juan, W., and Qing, W. “Improvement of the Magnetic Moment of NiZn Ferrites Induced by Substitution of Nd3+ Ions for Fe3+ Ions”, Journal of Magnetism and Magnetic Materials, Vol. 453, pp. 246-253, 2018.

ارتقاء امنیت وب با وف ایرانی