1. Ramakrishna, S., “Biomedical Applications of Polymer-Composite Materials: A Review”, Composites science and technology. Vol. 61, No. 9, pp. 1189-1224, 2001.
2. Wallace, S., “Short-Term and Long-Term Effects of Orthopedic Biodegradable Implants”, Department of Orthopedic Surgery. Vol. 21, No. 2, pp. 93–122, 2011.
3. Abedalwafa, M., Wang, F., “Biodegradable Poly-Epsilon-Caprolactone (PCL) for Tissue Engineering Applications: A review”. Rev. Adv. Mater. Sci. Vol. 34, pp. 123–140, 2013.
4. Chen, J.P., Chang, Y. S., “Preparation and Characterization of Composite Nanofibers of Polycaprolactone and Nanohydroxyapatite for Osteogenic Differentiation of Mesenchymal Stem Cells”, Colloids Surf. B: Bio interfaces. Vol. 86, pp.169–175, 2011.
5. Baykan E., Koc, A., “Evaluation of a Biomimetic Poly (ε-Caprolactone)/β-Tricalcium Phosphate Multispiral Scaffold for Bone Tissue Engineering: in vitro and in vivo studies”, Biointerphases. Vol. 9, pp. 11-29, 2014.
6. Russias J., Saiz E., “Fabrication and Mechanical Properties of PLA/HA Composites: A Study of In Vitro Degradation”, Mater Sci Eng C Biomim Supramol Syst. Vol. 26, No. 8, pp. 1289–1295, 2006.
7. Therias, S., Larche, J., “Photochemical Behavior of Polylactide/ZnO Nanocomposite Films”, Biomacromolecules.Vol.13, pp. 3283–3291, 2012.
8. Sawai, J., “Quantitative Evaluation of Antibacterial Activities of Metallic Oxide Powders (ZnO, MgO and CaO) by Conductimetric Assay”, Microbiol Methods. Vol. 54, pp. 177–182, 2003.
9. Aleaghil1 S., Fattahy, E., “Antibacterial Activity of Zinc Oxide Nanoparticles on Staphylococcus Aureus”, International Journal of Advanced Biotechnology and Research. pp.1569-1575, 2016.
10. Pascual, Diez., “Development and Characterization of Novel Poly (Etherether Ketone)/ZnO Bionanocomposites”, J. Mater. Chem. B. Vol. 2, pp. 3065–3078, 2014.
11. Karvani, Z., Chehrazi, P., “Antibacterial Activity of ZnO Nanoparticle on Grampositive and Gram-negative Bacteria”, African Journal of Microbiology Research. Vol. 5, No. 12, pp. 1368-1373, 2011.
12. Res, M., “In Vivo Evaluation of Electrospun Polycaprolactone Membranes Incorporated with ZnO Nanoparticles as Skin Substitutes”, RSC Adv. Vol. 4, No. 93, pp. 51528 –51536, 2014.
13. Roy, S., Khanna, S., “Dermal Wound Healing is Subject to Redox Control”, Molecular Therapy. Vol. 13, No. 1, pp. 211-220, 2006.
14. Sirelkhatim, A., Mahmud, S., “Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism”, Nano-Micro Lett. Vol. 7, No. 3, pp. 219–242, 2015.
15. Mirhosseini, M., Firouzabadi FB., “Antibacterial Activity of Zinc Oxide Nanoparticle Suspensions on Food-Borne Pathogens”, International Journal of Dairy Technology. Vol. 65, pp. 1-5, 2012.
16. Arcos D., “Vallet-RegíM. Bioceramics for drug delivery”, Acta Materialia. Vol. 61, No. 3, pp. 890-911, 2013.
17. Okamoto, M., John, B., “Synthetic Biopolymer Nanocomposites for Tissue Engineering Scaffolds”, Advanced Polymeric Nanostructured Materials Engineering. pp. 468-8511,2013.
18. Mariusz, C., Jacek, W., “Zink Oxsid Nano Particles Cytotoxicity and Newly Formed PMMA-ZnO Nanocomposites Designed for Denture Bases”, Nanomaterials. Vol. 9, pp.13-18, 2019.
19. lebenz, R., “The Study of Hydroxyapatite Reinforced Polylactic Acid Composites for Orthopedic Applications”. Nanomaterials. Vol. 4, pp. 23-29, 2014.
20. Konan, S., Haddad F. ”A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery”. The Knee.16 (1): pp. 6-13, 2009.
21. Furukawa, T. “Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (l-lactide) composite rods for internal fixation of bone fractures”. Biomaterials. 21(9): pp. 889-898, 2000.
22. Sirelkhatim., A., Mahmud., S., “Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism”, Nano-Micro Lett. Vol.7, pp. 219–242, 2015.
23. Zhang, C., “Nano-hydroxyapatite/poly (L-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties”. Journal of Materials Science: Materials in Medicine.21 (12): pp. 3077-3083, 2010.
24. Hunt., J., “Polymer-hydroxyapatite composite versus polymer interference screws in anterior cruciate ligament reconstruction in a large animal model”, Knee Surgery. Sports Traumatology Arthroscopy. Vol. 7, pp. 655-660, 2008.
25. Vasile., Râpă., “New PLA/ZnO :Cu/Ag bio nanocomposites for food packaging” , eXPRESS Polymer Letters , Vol.11, pp. 531–544, 2017.
26. Brown, A., “Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction”, Acta biomaterialia. Vol.11pp.543-553, 2014.
27. Kim, K.-J., “Magnesium ions enhance infiltration of osteoblasts in scaffolds via increasing cell motility”, Journal of Materials Science: Materials in Medicine. Vol. 28 pp. 96, 2017.
28. Bigham, A., “Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications”, Ceramics International. Vol.10, pp. 11798-11806, 2018.
29. Wang, Y.-W., “Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria”, ACS applied materials & interfaces. Vol.6, pp. 2791-2798, 2014.
30. O’Connor, J.P., “Zinc as a therapeutic agent in bone regeneration”, Materials, Vol.10, pp. 2211, 2020.
31. Castro-Mayorga, J.L., “The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly (3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications”, Food and Bioproducts Processing. Vol.101, pp. 32-44, 2017.
32. Mao, D., Li, Q., “Porous Stable Poly (Lactic Acid)/Ethyl Cellulose/Hydroxyapatite Composite Scaffolds Prepared by a Combined Method for Bone Regeneration”, Carbohydr. Polym. Vol. 180, pp. 104–111, 2018.
33. Davoudi’s., Oliaei, N., Davachi, S., “Preparation and Characterization of Interface-Modified PLA/Starch/PCL Ternary Blends Using PLLA/Triclosan Antibacterial Nanoparticles for Medical Applications”, RSC Advances. Vol.6, pp. 39870-39882, 2016.