Investigating the Effect of Chemical Composition and Sintering Temperature on Mechanical Properties of SiC-5TiB2 Nano Composite Reinforced by Graphene Quantum dot using Taguchi Test Design Method

Document Type : Original Article

Authors

Composite Materials & Technology Center, Malek Ashtar University of Technology, Tehran, Iran

Abstract

The purpose of this research was to fabricate and investigate the properties of SiC-5TiB2 nano composites reinforced by gaphene quantum dot nanoparticles via pressure less sintering method. In this way, SiC, TiB2, and graphene quantum dot raw materials were used in nanometer dimensions. First, before performing any laboratory operations, experimental samples were designed using Minitab 14 software. The design was done by the Taguchi method according to the L9 array and the parameters of the amount of gaphene quantum dot amplification in three levels were set at 0.2, 0.6, and 1 wt.% and sintering temperatures were defined as 2000, 2100, and 2200°C. The sintering process was carried out at certain temperatures in argon atmosphere for 2 h. XRD, FESEM, FTIR and Raman spectroscopy were performed. Density, micro hardness, and fracture toughness measurements were used for further investigations of physical and mechanical properties. The microstructure of the samples was also observed to determine the fracture toughness mechanisms. The results showed that the parameter of the amount of reinforcement was in the first rank of influence and the sintering temperature was in the second rank, and the best results were obtained in the sample with the amount of 0.6 wt.% of gaphene quantum dot and the sintering temperature of 2100 °C, where hardness and fracture toughness values were obtained to be 27.7 GPa and 3.3 MPa.m1/2, respectively.

Keywords

Main Subjects


  1. Khodaei M, Yaghobizadeh O, Baharvandi HR, Esmaeeli S, Javi H. The effect of Cr2O3 additions on sinterability and mechanical properties of liquid-phase sintered SiC ceramics. Journal of Alloys and Compounds. 2020 Jul 15; 829:154501. https://doi.org /10.1016/j.jallcom.2020.154501
  2. Ciudad E, Borrero-López O, Rodríguez-Rojas F, Ortiz AL, Guiberteau F. Effect of interganular phase chemistry on the sliding-wear resistance of pressure less liquid-phase-sintered α-SiC. Journal of the European Ceramic Society. 2012 Feb 1;32(2):511-6. https://doi.org/10.1016/j.jeurceramsoc.2011.09.011
  3. Eom JH, Kim YW, Song IH. Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macro porous silicon carbide ceramics. Journal of the European Ceramic Society. 2012 Jun 1;32(6):1283-90. https://doi.org/ 10.1016/j.jeurceramsoc.2011.11.040
  4. Yu J, Zhao G, Zhang C, Chen L. Dynamic evolution of gain structure and micro-texture along a welding path of aluminum alloy profiles extruded by porthole dies. Materials Science and Engineering: A. 2017 Jan 13; 682:679-90. https://doi.org/10.1016/j.msea.2016. 11.089
  5. Akin I, Kaya O. Microstructures and properties of silicon carbide-and gaphene nanoplatelet-reinforced titanium diboride composites. Journal of Alloys and Compounds. 2017 Dec 30; 729:949-59. https://doi.org/10.1016/j.jallcom.2021.161110
  6. Kovalčíková A, Tatarko P, Sedlak R, Medveď D, Chlup Z, Múdra E, Dusza J. Mechanical and tribological properties of TiB2-SiC and TiB2-SiC-GNPs ceramic composites. Journal of the European Ceramic Society. 2020 Nov 1;40(14):4860-71. https://doi.org/10.1016/j.jeurceramsoc.2020.04.045
  7. Xu X, Luan X, Zhang J, Cao X, Zhao D, Cheng L, Riedel R. Significant improvement of ultra-high temperature oxidation resistance of C/SiC composites upon matrix modification by SiHfBCN ceramics. Composites Part B: Engineering. 2023 Mar 15; 253: 110553. https://doi.org/10.1016/j.compositesb.2023.110553
  8. Li L, Wang Y, Cheng L, Zhang L. Preparation and properties of 2D C/SiC–ZrB2–TaC composites. Ceramics International. 2011 Apr 1; 37(3):891-6. https://doi.org/10.1016/j.ceramint.2010.10.033
  9. Lee SK, Kim CH. Effects of α‐SiC versus β‐SiC starting powders on microstructure and fracture toughness of SiC sintered with Al2O3‐Y2O3 additives. Journal of the American Ceramic Society. 1994 Jun;77(6):1655-8. https://doi.org/10.1111/j. 1151-2916.1994.tb09771.x  
  10. Pan Z, Fabrichnaya O, Seifert HJ, Neher R, Brandt K, Herrmann M. Thermodynamic evaluation of the Si-C-Al-YO system for LPS-SiC application. Journal of phase equilibria and diffusion. 2010 Jun;31:238-49. https://doi.org/10.1007/s11669-010-9695-7
  11. Yang Q. Role of Al on the microstructure and mechanical properties of hot-pressed ABC-SiC.
  12. Perera DS, Tokita M, Moricca S. Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing. Journal of the European Ceramic Society. 1998 Apr 1;18(4): 401-4. https://doi.org/10.1016/S0955-2219(97)00139-8
  13. Wan J, Duan RG, Mukherjee AK. Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts. Scripta Materialia. 2005 Sep 1;53(6):663-7. https://doi.org/10.1016/j.scriptamat.2005.05.037
  14. Yang H, Zhou X, Yu J, Wang H, Huang Z. Microwave and conventional sintering of SiC/SiC composites: Flexural properties and microstructures. Ceramics International. 2015 Nov 1;41(9):11651-4. https://doi.org/10.1016/j.ceramint.2015.05.126
  15. Eom JH, Seo YK, Kim YW. Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina–yttria–calcia. Journal of the American Ceramic Society. 2016 May;99(5):1735-41. https://doi.org/10.1111/jace.14114
  16. Khodaei M, Yaghobizadeh O, Baharvandi HR, Dashti A. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites. International Journal of Refractory Metals and Hard Materials. 2018 Jan 1;70:19-31. https://doi.org/ 10.1016/j.ijrmhm.2017.09.005
  17. Saeedi HM, Abbasi S, Mirkazemi M. Comparison the effect of temperature and amount of SiC on properties and microstructure of foam glass from waste soda-lime glass and cathode ray tube display panel.https://doi.org/10.1016/j.rser.2017.08.027
  18. Yaghobizadeh O, Nazari M, Mashhadi M. The effect of rapid microwave sintering process on the electrical conductivity, thermal conductivity and mechanical properties of Al-TiC composites. Materials Research. 2018 Oct 11;21:e20180324. https://doi.org/10.1590/ 19805373MR-2018-0324
  19. Rafaniello W, PLICHTA MR, VIRKAR AV. Investigation of Phase Stability in the System SiC‐AlN. Journal of the American Ceramic Society. 1983 Apr;66(4):272-6. https://doi.org/10.1111/j. 1151-2916.1983.tb15713.x
  20. Yaghobizadeh O, Nazari M, Mashhadi M. The effect of rapid microwave sintering process on the electrical conductivity, thermal conductivity and mechanical properties of Al-TiC composites. Materials Research. 2018 Oct 11;21: e20180324.  https://doi.org/10.1590/ 1980-5373-MR-2018-0324
  21. Jamwal A, Prakash P, Kumar D, Singh N, Sadasivuni KK, Harshit K, Gupta S, Gupta P. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–gaphite hybrid composites. Journal of Composite Materials. 2019 Aug;53(18):2545-53. https://doi.org/10.1177/0021998319832961
  22. Chan KF, Zaid MH, Mamat MS, Liza S, Tanemura M, Yaakob Y. Recent developments in carbon nanotubes-reinforced ceramic matrix composites: A review on dispersion and densification techniques. Crystals. 2021 Apr 21;11(5):457.  https://doi.org/ 10.3390/cryst11050457
  23. Miranzo P, Ramírez C, Román-Manso B, Garzón L, Gutiérrez HR, Terrones M, Ocal C, Osendi MI, Belmonte M. In situ processing of electrically conducting gaphene/SiC nanocomposites. Journal of the European Ceramic Society. 2013 Sep 1;33(10):1665-74. https://doi.org/1016/j.jeurceramsoc.2013.01.021
  24. Zhang X, An Y, Han J, Han W, Zhao G, Jin X. Gaphene nanosheet reinforced ZrB 2–SiC ceramic composite by thermal reduction of gaphene oxide. Rsc Advances. 2015;5(58):47060-5. https://doi.org/ 10.1039/C5RA05922D
  25. Razmjoo A, Baharvandi HR, Ehsani N. Pressureless sintering of SiC matrix composites reinforced with nano-β-SiC and gaphene. Journal of the Korean Ceramic Society. 2022 Sep;59(5):729-41. https:// doi.org/10.1007/s43207-022-00213-0
  26. Sedlák R, KovalĿíková A, Girman V, Múdra E, Rutkowski P, Dubiel A, Dusza J. Fracture characteristics of SiC/gaphene platelet composites. Journal of the European Ceramic Society. 2017 Nov 1;37(14):4307-14. https://doi.org/10.1016/j.jeurceramsoc.2017.04.067
  27. Yadhukulakrishnan GB, Rahman A, Karumuri S, Stackpoole MM, Kalkan AK, Singh RP, Harimkar SP. Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Materials Science and Engineering: A. 2012 Aug 30; 552:125-33. https://doi.org/10.1016/j.msea.2012.05.020
  28. Tian P, Tang L, Teng KS, Lau SP. Gaphene quantum dots from chemistry to applications. Materials today chemistry. 2018 Dec 1; 10:221-58. https://doi.org/ 10.1016/j.mtchem.2018.09.007
  29. Facure MH, Schneider R, Mercante LA, Correa DS. A review on gaphene quantum dots and their nanocomposites: from laboratory synthesis towards agicultural and environmental applications. Environmental Science: Nano. 2020;7(12):3710-34. DOI1002/slct.202102353
  30. Chen W, Lv G, Hu W, Li D, Chen S, Dai Z. Synthesis and applications of gaphene quantum dots: a review. Nanotechnology Reviews. 2018 Apr 25;7(2):157-85.https://doi.org/ 1515/ntrev-2017-0199
  31. Roy RK. Design of experiments using the Taguchi approach: 16 steps to product and process improvement. John Wiley & Sons; 2001 Feb 13. ISBN: 978-0-471-36101-5
  32. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX. Fabrication of highly fluorescent gaphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. Journal of Materials Chemistry C. 2013;1(31):4676-84. https://doi.org/10.1039/ C3TC30820K
  33. Miranzo P, Ramírez C, Román-Manso B, Garzón L, Gutiérrez HR, Terrones M, Ocal C, Osendi MI, Belmonte M. In situ processing of electrically conducting gaphene/SiC nanocomposites. Journal of the European Ceramic Society. 2013 Sep 1;33(10):1665-74. https:// doi.org/1016/j.jeurceramsoc. 2013.01.021
  34. Cai N, Guo D, Wu G, Xie F, Tan S, Jiang N, Li H. Decreasing resistivity of silicon carbide ceramics by incorporation of gaphene. Materials. 2020 Aug 13;13(16):3586.  https://doi.org/10.3390/ma13163586
  35. Razmjoo A, Baharvandi HR, Ehsani N. The effect of gaphene addition on the properties of SiC ceramics—A review. Journal of the Australian Ceramic Society. 2022 Apr;58(2):437-60, https://doi.org/10.1007/s41779-022-00701-w

ارتقاء امنیت وب با وف ایرانی