This research used multi-walled carbon nanotubes with a 30 to 50 nm diameter and an approximate length of 6 µm to store hydrogen gas by the volumetric method. Carbon nanotubes' structure, shape, and physical properties were investigated by X-ray diffraction analysis, transmission electron microscopy, and infrared spectroscopic analysis. To investigate the hydrogen storage capacity in carbon nanotubes, the effect of two parameters, namely acid washing and YAG: Nd laser irradiation, were studied. The results showed that acid washing and laser irradiation increased the specific surface area of carbon nanotubes by 59% and 100%, respectively. Studies also showed that purified carbon nanotubes stored 0.3 wt.% hydrogen, which revealed a 75% increase compared to the original nanotubes. Also, laser irradiation with different times changed the storage capacity of nanotubes. The optimal value of laser irradiation was obtained to be 90 minutes, which increased the storage capacity of hydrogen gas in nanotubes to 1.1 wt.%.
Harris PJF, Hernández E, Yakobson BI. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century. Am. J. Phys [Internet]. 2004; 72: 415-21. Available from: https://doi.org/ 10.1119/1.1645289
Iijima S. Helical microtubules of graphitic carbon. Nature [Internet]. 1991;354(6348):56–8. Available from: http://dx.doi.org/10.1038/354056a0
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature [Internet]. 1993 Jun;363(6430):603–5. Available from: https://www. nature.com/articles/363603a0
Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature [Internet]. 1993 Jun;363(6430):605–7. Available from: https://www.nature.com/articles/ 363605a0
Han W, Fan S, Li Q, Gu B, Zhang X, Yu D. Synthesis of silicon nitride nanorods using carbon nanotube as a template. Appl Phys Lett [Internet]. 1997;71(16):2271–3. Available from: http://dx.doi. org/10.1063/1.120550
Han W, Fan S, Li Q, Hu Y. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science [Internet]. 1997;277(5330):1287–9. Available from: http://dx.doi.org/10.1126/science. 277.5330.1287
Zhu YQ, Hsu WK, Kroto HW, Walton DR. Carbon nanotube template promoted growth of NbS2 nanotubes/nanorods. Chem Commun (Camb). 2001;(21):2184–5.
Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature [Internet]. 1997;386(6623):377–9. Available from: http://dx.doi. org/10.1038/386377a0
Yang Q, Li F, Hou P, Liu C, Liu M, Cheng H. Evaluation of diameter distribution of inside cavities of open CNTs by analyses of nitrogen cryo-adsorption isotherm. Chin Sci Bull [Internet]. 2001;46(15):1317–20. Available from: http://dx.doi. org/10.1007/bf03184334
Stan G, Cole MW. Low coverage adsorption in cylindrical pores. Surf Sci [Internet]. 1998;395(2–3):280–91. Available from: http://dx.doi.org/10.1016/ s0039-6028(97)00632-8
Cole MW, Crespi VH, Stan G, Ebner C, Hartman JM, Moroni S, et al. Condensation of helium in nanotube bundles. Phys Rev Lett [Internet]. 2000;84(17):3883–6. Available from: http://dx.doi. org/10.1103/physrevlett.84.3883
Gordillo MC, Boronat J, Casulleras J. Zero-temperature equation of state of quasi-one-dimensional H2. Phys Rev Lett [Internet]. 2000; 85(11): 2348–51. Available from: http://dx.doi.org/10.1103/PhysRevLett.85.2348
Inoue S, Ichikuni N, Suzuki T, Uematsu T, Kaneko K. Capillary condensation of N2 on multiwall carbon nanotubes. J Phys Chem B [Internet]. 1998;102(24): 4689–92. Available from: http://dx.doi.org/10.1021/ jp973319n
Eswaramoorthy M, Sen R, Rao CNR. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chem Phys Lett [Internet]. 1999;304(3–4):207–10. Available from: http://dx.doi.org/10.1016/s0009-2614(99)00311-5
Gao H, Wu XB, Li JT, Wu GT, Lin JY, Wu K, et al. Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes. Appl Phys Lett [Internet]. 2003;83(16):3389–91. Available from: http://dx.doi.org/10.1063/1.1620675
Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ. Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods. Mater Res Express [Internet]. 2017;4(9):095030. Available from: http://dx.doi.org/10.1088/2053-1591/aa87f6
Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ. Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage. Int J Hydrogen Energy [Internet]. 2018;43(27):12211–21. Available from: http://dx.doi. org/10.1016/j.ijhydene.2018.04.144
Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ. Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage. Int J Hydrogen Energy [Internet]. 2018;43(27):12211–21. Available from: http://dx.doi. org/10.1016/j.ijhydene.2018.04.144
Maiman TH. Stimulated optical radiation in Ruby. Nature [Internet]. 1960;187(4736):493–4. Available from: http://dx.doi.org/10.1038/187493a0
Legnaioli S, Campanella B, Poggialini F, Pagnotta S, Harith MA, Abdel-Salam ZA, et al. Industrial applications of laser-induced breakdown spectroscopy: a review. Anal Methods [Internet]. 2020;12(8):1014–29. Available from: http://dx.doi.org/10.1039/c9ay02728a
Azadgoli B, Baker RY. Laser applications in surgery. Ann Transl Med [Internet]. 2016 [cited 2023 Dec 10];4(23):452–452. Available from: https://atm. amegroups.org/article/view/12910/13261
Byskov-Nielsen J, Balling P. Laser structuring of metal surfaces: Micro-mechanical interlocking. Appl Surf Sci [Internet]. 2009;255(10):5591–4. Available from: http://dx.doi.org/10.1016/j.apsusc.2008.07.118
Yan Z, Chrisey DB. Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C: Photochem Rev [Internet]. 2012;13(3): 204–23. Available from: http://dx.doi.org/10.1016/j.2012.04.004
Atchudan R, Pandurangan A, Joo J. Effects of nanofillers on the Thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J Nanosci Nanotechnol [Internet]. 2015;15(6):4255–67. Available from: http://dx.doi.org/10.1166/jnn.2015.9706
Ahmed DS, Haider AJ, Mohammad MR. Comparesion of functionalization of multi-walled carbon nanotubes treated by oil Olive and nitric acid and their characterization. Energy Procedia [Internet]. 2013; 36: 1111–8. Available from: http://dx.doi.org/ 10.1016/j.egypro.2013.07.126
Reyhani A, Mortazavi SZ, Nozad Golikand A, Moshfegh AZ, Mirershadi S. The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes. J Power Sources [Internet]. 2008;183(2):539–43. Available from: http://dx.doi. org/10.1016/j.jpowsour.2008.05.039
Chen M, Yu H-W, Chen J-H, Koo H-S. Effect of purification treatment on adsorption characteristics of carbon nanotubes. Diam Relat Mater [Internet]. 2007;16(4–7):1110–5. Available from: http://dx.doi.org /10.1016/j.diamond.2006.12.061
Mehrabi, M., & Shojaee, F. (2023). The Effect of Acid Washing and YAG:Nd Laser Irradiation on Increasing Hydrogen Storage Capacity in Carbon Nanotubes. Journal of Advanced Materials in Engineering (Esteghlal), 42(3), 17-29. doi: 10.47176/jame.42.3.1031
MLA
M. Mehrabi; F. Shojaee. "The Effect of Acid Washing and YAG:Nd Laser Irradiation on Increasing Hydrogen Storage Capacity in Carbon Nanotubes", Journal of Advanced Materials in Engineering (Esteghlal), 42, 3, 2023, 17-29. doi: 10.47176/jame.42.3.1031
HARVARD
Mehrabi, M., Shojaee, F. (2023). 'The Effect of Acid Washing and YAG:Nd Laser Irradiation on Increasing Hydrogen Storage Capacity in Carbon Nanotubes', Journal of Advanced Materials in Engineering (Esteghlal), 42(3), pp. 17-29. doi: 10.47176/jame.42.3.1031
VANCOUVER
Mehrabi, M., Shojaee, F. The Effect of Acid Washing and YAG:Nd Laser Irradiation on Increasing Hydrogen Storage Capacity in Carbon Nanotubes. Journal of Advanced Materials in Engineering (Esteghlal), 2023; 42(3): 17-29. doi: 10.47176/jame.42.3.1031