The Effect of Acid Washing and YAG:Nd Laser Irradiation on Increasing Hydrogen Storage Capacity in Carbon Nanotubes

Document Type : Original Article

Authors

1 Physics Department, Persian Gulf University, Bushehr, P. O. Box: 7516913817, Iran

2 Chemistry Department, Persian Gulf University, Bushehr, P. O. Box: 7516913817, Iran

Abstract

This research used multi-walled carbon nanotubes with a 30 to 50  nm diameter and an approximate length of 6  µm to store hydrogen gas by the volumetric method. Carbon nanotubes' structure, shape, and physical properties were investigated by X-ray diffraction analysis, transmission electron microscopy, and infrared spectroscopic analysis. To investigate the hydrogen storage capacity in carbon nanotubes, the effect of two parameters, namely acid washing and YAG: Nd laser irradiation, were studied. The results showed that acid washing and laser irradiation increased the specific surface area of carbon nanotubes by 59%  and 100%, respectively. Studies also showed that purified carbon nanotubes stored 0.3 wt.% hydrogen, which revealed a 75% increase compared to the original nanotubes. Also, laser irradiation with different times changed the storage capacity of nanotubes. The optimal value of laser irradiation was obtained to be 90  minutes, which increased the storage capacity of hydrogen gas in nanotubes to 1.1 wt.%.

Keywords

Main Subjects


  1. Harris PJF, Hernández E, Yakobson BI. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century. Am. J. Phys [Internet]. 2004; 72: 415-21. Available from: https://doi.org/ 10.1119/1.1645289
  2. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature [Internet]. 1985 Nov;318(6042):162–3. Available from: https:// www.nature.com/articles/318162a0
  3. Iijima S. Helical microtubules of graphitic carbon. Nature [Internet]. 1991;354(6348):56–8. Available from: http://dx.doi.org/10.1038/354056a0
  4. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature [Internet]. 1993 Jun;363(6430):603–5. Available from: https://www. nature.com/articles/363603a0
  5. Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature [Internet]. 1993 Jun;363(6430):605–7. Available from: https://www.nature.com/articles/ 363605a0
  6. Han W, Fan S, Li Q, Gu B, Zhang X, Yu D. Synthesis of silicon nitride nanorods using carbon nanotube as a template. Appl Phys Lett [Internet]. 1997;71(16):2271–3. Available from: http://dx.doi. org/10.1063/1.120550
  7. Han W, Fan S, Li Q, Hu Y. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science [Internet]. 1997;277(5330):1287–9. Available from: http://dx.doi.org/10.1126/science. 277.5330.1287
  8. Zhu YQ, Hsu WK, Kroto HW, Walton DR. Carbon nanotube template promoted growth of NbS2 nanotubes/nanorods. Chem Commun (Camb). 2001;(21):2184–5.
  9. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature [Internet]. 1997;386(6623):377–9. Available from: http://dx.doi. org/10.1038/386377a0
  10. Yang Q, Li F, Hou P, Liu C, Liu M, Cheng H. Evaluation of diameter distribution of inside cavities of open CNTs by analyses of nitrogen cryo-adsorption isotherm. Chin Sci Bull [Internet]. 2001;46(15):1317–20. Available from: http://dx.doi. org/10.1007/bf03184334
  11. Stan G, Cole MW. Low coverage adsorption in cylindrical pores. Surf Sci [Internet]. 1998;395(2–3):280–91. Available from: http://dx.doi.org/10.1016/ s0039-6028(97)00632-8
  12. Cole MW, Crespi VH, Stan G, Ebner C, Hartman JM, Moroni S, et al. Condensation of helium in nanotube bundles. Phys Rev Lett [Internet]. 2000;84(17):3883–6. Available from: http://dx.doi. org/10.1103/physrevlett.84.3883
  13. Gordillo MC, Boronat J, Casulleras J. Zero-temperature equation of state of quasi-one-dimensional H2. Phys Rev Lett [Internet]. 2000; 85(11): 2348–51. Available from: http://dx.doi.org/10.1103/PhysRevLett.85.2348
  14. Inoue S, Ichikuni N, Suzuki T, Uematsu T, Kaneko K. Capillary condensation of N2 on multiwall carbon nanotubes. J Phys Chem B [Internet]. 1998;102(24): 4689–92. Available from: http://dx.doi.org/10.1021/ jp973319n
  15. Eswaramoorthy M, Sen R, Rao CNR. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chem Phys Lett [Internet]. 1999;304(3–4):207–10. Available from: http://dx.doi.org/10.1016/s0009-2614(99)00311-5
  16. Gao H, Wu XB, Li JT, Wu GT, Lin JY, Wu K, et al. Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes. Appl Phys Lett [Internet]. 2003;83(16):3389–91. Available from: http://dx.doi.org/10.1063/1.1620675
  17. Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ. Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods. Mater Res Express [Internet]. 2017;4(9):095030. Available from: http://dx.doi.org/10.1088/2053-1591/aa87f6
  18. Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ. Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage. Int J Hydrogen Energy [Internet]. 2018;43(27):12211–21. Available from: http://dx.doi. org/10.1016/j.ijhydene.2018.04.144
  19. Mehrabi M, Parvin P, Reyhani A, Mortazavi SZ. Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage. Int J Hydrogen Energy [Internet]. 2018;43(27):12211–21. Available from: http://dx.doi. org/10.1016/j.ijhydene.2018.04.144
  20. Maiman TH. Stimulated optical radiation in Ruby. Nature [Internet]. 1960;187(4736):493–4. Available from: http://dx.doi.org/10.1038/187493a0
  21. Legnaioli S, Campanella B, Poggialini F, Pagnotta S, Harith MA, Abdel-Salam ZA, et al. Industrial applications of laser-induced breakdown spectroscopy: a review. Anal Methods [Internet]. 2020;12(8):1014–29. Available from: http://dx.doi.org/10.1039/c9ay02728a
  22. Azadgoli B, Baker RY. Laser applications in surgery. Ann Transl Med [Internet]. 2016 [cited 2023 Dec 10];4(23):452–452. Available from: https://atm. amegroups.org/article/view/12910/13261
  23. Byskov-Nielsen J, Balling P. Laser structuring of metal surfaces: Micro-mechanical interlocking. Appl Surf Sci [Internet]. 2009;255(10):5591–4. Available from: http://dx.doi.org/10.1016/j.apsusc.2008.07.118
  24. Yan Z, Chrisey DB. Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C: Photochem Rev [Internet]. 2012;13(3): 204–23. Available from: http://dx.doi.org/10.1016/j.2012.04.004
  25. Atchudan R, Pandurangan A, Joo J. Effects of nanofillers on the Thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J Nanosci Nanotechnol [Internet]. 2015;15(6):4255–67. Available from: http://dx.doi.org/10.1166/jnn.2015.9706
  26. Ahmed DS, Haider AJ, Mohammad MR. Comparesion of functionalization of multi-walled carbon nanotubes treated by oil Olive and nitric acid and their characterization. Energy Procedia [Internet]. 2013; 36: 1111–8. Available from: http://dx.doi.org/ 10.1016/j.egypro.2013.07.126
  27. Reyhani A, Mortazavi SZ, Nozad Golikand A, Moshfegh AZ, Mirershadi S. The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes. J Power Sources [Internet]. 2008;183(2):539–43. Available from: http://dx.doi. org/10.1016/j.jpowsour.2008.05.039
  28. Chen M, Yu H-W, Chen J-H, Koo H-S. Effect of purification treatment on adsorption characteristics of carbon nanotubes. Diam Relat Mater [Internet]. 2007;16(4–7):1110–5. Available from: http://dx.doi.org /10.1016/j.diamond.2006.12.061

ارتقاء امنیت وب با وف ایرانی