Catalytic Application of Copper Complex Prepared by a NNN Pincer Ligand Supported on Silica Nanoparticles Using first Generation of Polyamidoamine Dendrimers
In this research, a catalytic system using a copper complex supported on silica nanoparticles was used as a nanocatalyst with high efficiency to enhance catalytic click reactions. At first, polyamidoamine dendrimers were synthesized using methyl acrylate and ethylene diamine by divergent synthesis method on aminopropyl grafted silica support. Then, modified silica-supported dendrimers were used as an organic-inorganic hybrid substrate to immobilize the NNN pincer ligand. The pincer ligand was formed by reacting the functionalized support with cyanuric chloride and then reacting with 2-aminopyridine. Next, through the reaction of copper chloride with the stabilized ligand, the copper (II) complex was formed on this compound. The prepared compound was used as a catalyst in azide-alkyne cycloaddition click reactions. The obtained data showed that in the optimized conditions: water-ethanol solution (1:1), catalyst mole percentage of 0.5, 60 °C, and time of 40 min, the reaction efficiency was obtained to be 97%.
Tahmasebi E, Yamini Y, Moradi M, Esrafili A. Polythiophene-coated Fe3O4 superparamagnetic nanocomposite: synthesis and application as a new sorbent for solid-phase extraction. Anal Chim Acta 2013; 770: 68-74. https://doi.org/10.1016/j.aca.2013. 01.043
van Houten JA. Century of chemical dynamics traced through the nobel prizes. 1992: Rudolph A. Marcus. J Chem Educ 2002;79:1055. https://doi.org/10.1021/ ed079p1055
a) Fiedor L, Kania A, Myśliwa-Kurdziel B, Orzeł Ł, Stochel G. Understanding chlorophylls: central magnesium ion and phytyl as structural determinants. Biochim Biophys Acta Bioenerg 2008;1777,1491-1500. https://doi.org/10.1016/j.bbabio.2008.09.005 b) Pauling, L, Coryell, CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci 1936;22:210-216. https://doi.org/10.1073/pnas.22.4.210
Moulton CJ, Shaw BL. Transition metal–carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-t-butylphosphino)methyl]phenyl. J Chem Soc Dalton Trans 1976;11:1020-4. https://doi.org/10.1039/DT9760001020
van Koten G. Tuning the reactivity of metals held in a rigid ligand environment. Pure Appl Chem 1989; 61: 1681-1694. https://doi.org/10.1351/pac198961101681
Peris E, Crabtree RH. Key factors in pincer ligand design. Chem Soc Rev 2018;47:1959-68. https:// doi.org/10.1039/C7CS00693D
Hong SY, Kwak J, Chang S. Rhodium-catalyzed selective C–H functionalization of NNN tridentate chelating compounds via a rollover pathway. Chem Commun 2016;52(15):3159-62. https://doi.org/10. 1039/C5CC09960A
Kjellgren J, Employment of palladium pincer complex catalysts and Lewis acids for synthesis and transformation of organometallic compounds. 2005 (Doctoral dissertation, Institutionen för organisk kemi).
Huff CA, Sanford MS. Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex. ACS Catalysis 2013; 4; 3(10): 2412-6. https://doi.org/10. 1021/cs400609u
Kumar A, Goldman AS. Recent advances in alkane dehydrogenation catalyzed by pincer complexes. The Privileged Pincer-Metal Platform: Coordination Chemistry & Applications. 2016:307-34. https://doi. org/10.1007/3418_2015_113
Fogler E, Balaraman E, Ben-David Y, Leitus G, Shimon LJ, Milstein D. New CNN-type ruthenium pincer NHC complexes. Mild, efficient catalytic hydrogenation of esters. Organometallics. 2011; 30(14):3826-33. https://doi.org/10.1021/om200367j
Churruca F, SanMartin R, Tellitu I, Domínguez E. PCP-Bis (phosphinite) pincer complexes: new homogeneous catalysts for α-arylation of ketones. Tetrahedron lett 2006;47(19):3233-7. https://doi.org/ 10.1016/j.tetlet.2006.03.040
Esfandiari M, Havaei G, Zahiri S, Mohammadnezhad G. Pincer complex immobilization onto different supports: Strategies and applications. Coord Chem Rev 2022;472:214778. https://doi.org/10.1016/j.ccr. 2022.214778
Bosman DA, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem rev 1999;99(7):1665-88. https://doi.org/10.1021/cr970069y
Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 2006;7(2):572-9. https://doi.org/10.1021/bm0506142
de Jesus E, Flores JC. Dendrimers: Solutions for catalyst separation and recycling–a review. Ind Eng Chem Res 2008;47(21):7968-81. https://doi.org/10. 1021/ie800381d
Zohreh N, Jahani M. NNN-pincer-copper complex immobilized on magnetic nanoparticles as a powerful hybrid catalyst for aerobic oxidative coupling and cycloaddition reactions in water. J Mol Catal A: Chem 2017;426:117-29. https://doi.org/10.1016/j. molcata.2016.11.007
Zohreh N, Hosseini SH, Jahani M, Xaba MS, Meijboom R. Stabilization of Au NPs on symmetrical tridentate NNN-Pincer ligand grafted on magnetic support as water dispersible and recyclable catalyst for coupling reaction of terminal alkyne. J Catal 2017;356:255-68. https://doi.org/10.1016/j.jcat. 2017.10.021
Hosseini SH, Zohreh N, Alipour S, Busuioc C, Negrea R. Gold nanoparticles stabilized on SBA-15 functionalized NNN-pincer ligand; highly effective catalyst for reduction of nitroarenes in aqueous medium. Catal Commun 2018;108:93-7. https://doi. org/10.1016/j.catcom.2018.01.002
Mohammadnezhad G, Esfandiari M, Steiniger F. End-grafted Cu-NNN pincer complexes on PAMAM dendrimers-SiO2: synthesis and characterization. New J Chem 2020;44(35):15054-65. https://doi.org/ 10.1039/D0NJ02693J
Huisgen R. 1,3‐dipolar cycloadditions. Past and future. Angew Chem, Int Ed Engl 1963;2(10):565-98. https://doi.org/10.1002/anie.196305651
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 2002;114(14):2708-11. https://doi.org/10.1002/1521-3757(20020715) 114:14<2708::AID-ANGE2708>3.0.CO;2-0
El-Sagheer AH, Brown T. Click chemistry with DNA. Chem Soc Rev 2010;39(4):1388-405. https://doi.org/10.1039/B901971P
Vantikommu J, Palle S, Reddy PS, Ramanatham V, Khagga M, Pallapothula VR. Synthesis and cytotoxicity evaluation of novel 1, 4-disubstituted 1,2,3-triazoles via CuI catalysed 1,3-dipolar cycloaddition. Eur J Med Chem 2010;45(11):5044-50. https://doi.org/10.1016/j.ejmech.2010.08.012
Buckle DR, Rockell CJ, Smith H, Spicer BA. Studies on 1,2,3-triazoles. 13.(Piperazinylalkoxy)-[1] benzopyrano [2, 3-d]-1,2,3-triazol-9 (1H)-ones with combined H1-antihistamine and mast cell stabilizing properties. J Med Chem 1986;29(11):2262-7. https://doi.org/10.1021/jm00161a022
Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB, Hutchinson DK, Morris J. Substituent effects on the antibacterial activity of nitrogen −carbon-linked (Azolylphenyl) oxazolidinones with expanded activity against the fastidious gram-negative organisms haemophilus influenzae and moraxella catarrhalis. J Med Chem 2000;43(5):953-70. https://doi.org/10. 1021/jm990373e
Alvarez R, Velazquez S, San-Felix A, Aquaro S, Clercq ED, Perno CF, Karlsson A, Balzarini J, Camarasa MJ. 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-beta.-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole 2'', 2''-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J Med Chem 1994;37(24):4185-94. https://doi.org/10.1021/ jm00050a015
Lv G, Mai W, Jin R, Gao L. Immobilization of dipyridyl complex to magnetic nanoparticle via click chemistry as a recyclable catalyst for Suzuki cross-coupling reactions. Synlett 2008;2008(09):1418-22. 10.1055/s-2008-1072597
Schaetz A, Hager M, Reiser O. Cu (II)‐ Azabis(oxazoline)‐Complexes Immobilized on Superparamagnetic Magnetite@ Silica‐Nanoparticles: A Highly Selective and Recyclable Catalyst for the Kinetic Resolution of 1,2‐Diols. Adv Func Mater 2009; 19(13):2109-15. https://doi.org/10.1002/adfm.200801861
Nasr-Esfahani M, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Mirkhani V, Tangestaninejad S, Amiri Rudbari H. Copper immobilized on nanosilica triazine dendrimer (Cu (II)-TD@nSiO2)-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles and bis-and tris-triazoles via a one-pot multicomponent click reaction. J Org Chem 2014;79(3):1437-43. https:// doi.org/10.1021/jo402170n
Sardarian AR, Mohammadi F, Esmaeilpour M. Dendrimer-encapsulated copper (II) immobilized on Fe3O4@ SiO2 NPs: a robust recoverable catalyst for click synthesis of 1,2,3-triazole derivatives in water under mild conditions. Res Chem Intermed 2019;45:1437-1456. https://doi.org/10.1007/s11164-018-3672-x
Banan A, Bayat A, Valizadeh H. Copper immobilized onto polymer‐coated magnetic nanoparticles as recoverable catalyst for ‘click’reaction. Appl Organomet Chem 2017;31(5):e3604. https://doi.org/ 10.1002/aoc.3604.
Mohammadnezhad, G., & Abedi, M. (2024). Catalytic Application of Copper Complex Prepared by a NNN Pincer Ligand Supported on Silica Nanoparticles Using first Generation of Polyamidoamine Dendrimers. Journal of Advanced Materials in Engineering (Esteghlal), 42(4), 77-91. doi: 10.47176/jame.42.4.1043
MLA
G. Mohammadnezhad; M. Abedi. "Catalytic Application of Copper Complex Prepared by a NNN Pincer Ligand Supported on Silica Nanoparticles Using first Generation of Polyamidoamine Dendrimers", Journal of Advanced Materials in Engineering (Esteghlal), 42, 4, 2024, 77-91. doi: 10.47176/jame.42.4.1043
HARVARD
Mohammadnezhad, G., Abedi, M. (2024). 'Catalytic Application of Copper Complex Prepared by a NNN Pincer Ligand Supported on Silica Nanoparticles Using first Generation of Polyamidoamine Dendrimers', Journal of Advanced Materials in Engineering (Esteghlal), 42(4), pp. 77-91. doi: 10.47176/jame.42.4.1043
VANCOUVER
Mohammadnezhad, G., Abedi, M. Catalytic Application of Copper Complex Prepared by a NNN Pincer Ligand Supported on Silica Nanoparticles Using first Generation of Polyamidoamine Dendrimers. Journal of Advanced Materials in Engineering (Esteghlal), 2024; 42(4): 77-91. doi: 10.47176/jame.42.4.1043