Evaluating Electrical and Magnetic Properties of Copper- and Iron-Doped ZnO Nanoparticles

Document Type : Original Article

Authors

Materials Engineering department, faculty of Engineering, Shahrekord University, Shahrekord, Iran

Abstract

In this research, zinc oxide semiconductor nanoparticles doped with copper and iron elements were synthesized by the reverse co-precipitation method and their electrical and magnetic properties were investigated. The results of XRD analysis of ZnO nanoparticles showed that high-purity nanoparticles were produced, and the presence of the added dopants did not change the hexagonal structure of zinc oxide despite the slight changes in crystallite size. Besides, the results of the FESEM analysis revealed the morphology and the size of 25 nm for the nanoparticles. Furthermore, the results of PL and DRS-UV analysis showed that the band gap and optical and electrical properties of the dopant zinc oxide nanoparticles have been enhanced compared to the zinc oxide. Finally, the magnetic characteristics of these nanoparticles was investigated using the VSM analysis, and the results showed appropriate ferromagnetic properties. In conclusion, the results demonstrate the success of the reverse co-deposition method by using a non-ionic surfactant (Span 80) in the production of Cu2+- doped and Fe2+- doped ZnO nanoparticles.

Keywords

Main Subjects


  1. Grundmann, The Physics of Semiconductors, Springer International Publishing, Cham, 2016. https://doi.org/10.1007/978-3-319-23880-7.
  2. A. Coleman, C. Jagadish, Basic Properties and Applications of ZnO, in: Zinc Oxide Bulk, Thin Film. Nanostructures, Elsevier, 2006: pp. 1–20. https://doi.org/10.1016/B978-008044722-3/50001-4.
  3. Liu, F. Yun, H. Morkoç, Ferromagnetism of ZnO and GaN: A Review, J. Mater. Sci. Mater. Electron. 16 (2005) 555–597. https://doi.org/10.1007/s10854-005-3232-1.
  4. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 1–103. https:// doi.org/10.1063/1.1992666.
  5. H. Park, S.B. Zhang, S.-H. Wei, Origin of p -type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B 66 (2002) 073202. https://doi.org/10. 1103/.66.073202.
  6. Xiu, J. Xu, P.C. Joshi, C.A. Bridges, M. Parans Paranthaman, ZnO Doping and Defect Engineering—A Review, in: 2016: pp. 105–140. https://doi.org/10.1007/978-3-319-20331-7_4.
  7. Thaweesaeng, S. Supankit, W. Techidheera, W. Pecharapa, Structure Properties of As-synthesized Cu-doped ZnO Nanopowder Synthesized by Co-precipitation Method, Energy Procedia 34 (2013) 682–688. https://doi.org/10.1016/j.egypro.2013.06.800.
  8. Sonkar, N.J. Mondal, B. Boro, M.P. Ghosh, D. Chowdhury, Cu doped ZnO nanoparticles: Correlations between tuneable optoelectronic, antioxidant and photocatalytic activities, J. Phys. Chem. Solids 185 (2024) 111715. https://doi.org/10. 1016/j.jpcs.2023.111715.
  9. Fu, Y. Li, S. Wu, P. Lu, J. Liu, F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Appl. Surf. Sci. 258 (2011) 1587–1591. https://doi.org/10.1016/j.apsusc. 2011.10.003.
  10. khodabande shahraki, I. Sharifi, H. Sharifi, Synthesis and study of co-doped zinc oxide nanoparticles with copper, magnesium, calcium, and cobalt ions by microemulsion method, J. Iran. Ceram. Soc. 17 (2021) 34–43. http://jicers.ir/article-1-324-en.html (accessed May 29, 2024).
  11. Ahmadpour, I. Sharifi, M. Nilforoushan, Synthesis and Investigation of Optical and Magnetic Properties of Co-Doped effect on Zinc Oxide Nanoparticles, J. Iran. Ceram. Soc. 17 (2021) 49–57. http://jicers.ir/article-1-416-en.html (accessed May 29, 2024).
  12. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd. 727 (2017) 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142.
  13. R. Bhapkar, S. Bhame, A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions, J. Environ. Chem. Eng. 12 (2024) 112553. https://doi.org/10.1016/j.jece.2024.112553.
  14. Torkamani, B. Aslibeiki, H. Naghshara, M. Darbandi, Structural and optical properties of ZnO nanorods:
    The effect of concentration and pH of the growth solution, Opt. Mater. (Amst). 127 (2022) 112295. https://doi.org/10.1016/j.optmat.2022.112295.
  15. S. George, S. Anil Kadam, S. Sreehari, L. Maria Jose, Y.- Ron Ma, A. Aravind, Inquest on photocatalytic and antibacterial traits of low composition Cu doped ZnO nanoparticles, Chem. Phys. Lett. 815 (2023) 140351. https://doi.org/10.1016/j.cplett.2023.140351.
  16. Javed, H.A. Sohail, A. Nazneen, M. Atif, G.M. Mustafa, M.I. Khan, Tuning of Structural, Magnetic, and Optical Properties of ZnO Nanoparticles by Co and Cu Doping, Solid State Commun. (2024) 115616. https://doi.org/10.1016/j.ssc.2024.115616.
  17. Elilarassi, G. Chandrasekaran, Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method, J. Mater. Sci. Mater. Electron. 21 (2010) 1168–1173. https://doi.org/10.1007/s10854-009-0041-y.
  18. K. Keshari, P. Gupta, M. Singh, ZnO nanoparticles doping with transition metal elements in polymeric and biomacromolecular matrix and their optical evolution, Opt. Mater. (Amst). 111 (2021) 110697. https://doi.org/10.1016/j.optmat.2020.110697.
  19. Roy, M.P. Ghosh, S. Mukherjee, Introducing magnetic properties in Fe-doped ZnO nanoparticles, Appl. Phys. A 127 (2021) 451. https://doi.org/10. 1007/s00339-021-04580-z.
  20. Bhardwaj, A. Bharti, J.P. Singh, K.H. Chae, N. Goyal, Influence of Cu doping on the local electronic and magnetic properties of ZnO nanostructures, Nanoscale Adv. 2 (2020) 4450–4463. https://doi.org/ 10.1039/D0NA00499E.

تحت نظارت وف ایرانی