Influence of Precipitation Treatment on the Homogenization and Mechanical Properties of FeNi1.5CrCu0.5 High-Entropy Alloy

Document Type : Original Article

Authors

Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

This study investigates the effect of precipitation treatment on the microstructure and mechanical properties of the high-entropy FeNi1.5CrCu0.5 alloy. The samples were first homogenized at 1080 °C for 12 hours, followed by precipitation treatment at 800 °C for 6, 24, and 48 hours. The microstructure of the samples was examined using optical and scanning electron microscopy. X-ray diffraction patterns confirmed the formation of Cr23C6 precipitates. The results demonstrated that the precipitation treatment effectively eliminated chromium-rich regions at the grain boundaries, and resulted in a more uniform microstructure after cold rolling and subsequent annealing. Mechanical properties, analyzed through shear punch testing, revealed that following cold rolling with an 80% thickness reduction and annealing at 1000 °C, the precipitated samples exhibited superior strength and ductility compared to the homogenized sample. The formation of Cr23C6 precipitates and the reduction in grain size were primary factors contributing to the improved mechanical properties. This study demonstrated that precipitating treatment significantly enhanced the strength and ductility of the FeNi1.5CrCu0.5 alloy.

Keywords

Main Subjects


  1. Miracle DB, Senkov ON.A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. https://doi.org/10.1016/j.actamat. 2016.08.081
  2. Liu WH, Yang T, Liu CT. Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater Chem Phys. 2018; 210:2–11. https://doi.org/10.1016/ j.matchemphys.2017.07.037
  3. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. https://doi.org/10.1126/science. 1254581
  4. Pickering EJ, Jones NG. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 2016; 61(3): 183–202. https://doi.org/10.1080/09506608.2016.1180020
  5. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014; 61:1–93. https://doi.org/10.1016/j.pmatsci. 10.001
  6. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal element: novel alloy design concepts and outcomes. Adv Eng Mater. 2004; 6(5):299-303. https://doi.org/10.1002/adem.2003005677.
  7. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC.Metastable high_entropy dual-phase alloys overcome the strength–ductility trade-off. Nature. 2016; 534(7606): 227-30. https://doi.org/10.1038/nature 179818.
  8. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014; 4(1):6200. https://doi. org/10.1038/srep062009.
  9. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011; 19(5): 698-706. https:// doi.org/10.1016/j.intermet.2011.01.004
  10. Gludovatz B, Hohenwarter A, Thurston KV, Bei H, Wu Z, George EP, Ritchie RO.Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures Nat Commun. 2016; 7(1):10602. https://doi. org/10.1038/ncomms10602
  11. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014; 345(6201): 1153-8. https://doi.org/10.1126/ science. 125458112.
  12. Luo H, Li Z, Mingers AM, Raabe D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci. 2018;134:131-9. https://doi.org/10.1016/j.corsci.2018.02. 03113.
  13. Pradeep KG, Tasan CC, Yao MJ, Deng Y, Springer H, Raabe D. Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design. Mater Sci Eng A. 2015;648:183-92. https://doi.org/10.1016/ j.msea.2015.09.010
  14. Deng HW, Xie ZM, Zhao BL, Wang YK, Wang MM, Yang JF, Zhang T, Xiong Y, Wang XP, Fang QF, Liu CS. Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins. Mater Sci Eng A. 2019; 744:241-6. https://doi.org/10.1016/ j.msea.2018.11.143
  15. Vaidya M, Guruvidyathri K, Murty BS. Phase for_mation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J Alloys Compd. 2019; 774:856-64. https://doi.org/10. 1016/j.jallcom.2018.09.34216.
  16. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016; 534 (7606):227–30. http://dx.doi.org/10.1038/nature17981
  17. Li C, Hu X, Yang T, Kumar NK, Wirth BD, Zinkle SJ. Neutron irradiation response of a Co-free high entropy alloy. J Nucl Mater. 2019; 527:151838. https://doi.org/10.1016/j.jnucmat.2019.151838 18.
  18. Zhao YL, Yang T, Zhu JH, Chen D, Yang Y, Hu A, Liu CT, Kai JJ. Development of high_strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr Mater. 2018; 148:51-5. http://dx. doi.org/10.1016/j.scriptamat.2018.01.028
  19. Zhang M, Zhang L, Fan J, Yu P, Li G. Novel Co-free CrFeNiNb0.1Ti high-entropy alloys with ultra high hardness and strength. Mater Sci Eng A. 2019; 764: 138212. http://dx.doi.org/10.1016/j.msea.2019.13821220.
  20. T Tung CC, Yeh JW, Shun TT, Chen SK, Huang YS, Chen HC. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett. 2007; 61(1):1-5. https://doi.org/10.1016/j.matlet.2006.03.140
  21. Ren B, Liu ZX, Cai B, Wang MX, Shi L. Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Mater Des. 2012; 33:121-6. http://dx.doi.org/10. 1016%2Fj.matdes.2011.07.005
  22. Rao ZY, Wang X, Zhu J, Chen XH, Wang L, Si JJ, Wu YD, Hui XD. Affordable FeCr_NiMnCu high entropy alloys with excellent comprehensive tensile properties. Intermetallics. 2016; 77:23–33. http://dx. doi.org/10.1016/j.intermet.2016.06.011
  23. Ma SG, Qiao JW, Wang ZH, Yang HJ, Zhang Y. Microstructural features and tensile behaviors of the Al0. 5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater Des. 2015;88:1057- 62. https://doi.org/10.1016/j.matdes.2015.09.092
  24. Ng C, Guo S, Luan J, Wang Q, Lu J, Shi S, Liu CT. Phase stability and tensile properties of Co-free Al 0.5CrCuFeNi2 high-entropy alloys. J Alloys Compd. 2014; 584:530-7. http://dx.doi.org/10.1016/j.jallcom. 2013.09.105
  25. Moazzen P, Toroghinejad MR. Enhancement of mechanical properties of a novel single phase Ni1.5FeCrCu0.5 HEA through cold rolling and subsequent annealing. Mater Sci Eng A. 2022; 848: 143360. https://doi.org/10.1016/j.msea.2022.143360
  26. Taali S, Moazzen P, Toroghinejad MR. Annealing texture in asymmetrically rolled Ni1.5FeCrCu0.5high -entropy alloy. JMR&T. 2022; 18:5075-86. https://doi.org/10.1016/j.jmrt.2022.04.12627.
  27. Guduru RK, Darling KA, Kishore R, Scattergood RO, Koch CC, Murty KL. Evaluation of mechanical properties using shear-punch testing. Mater Sci Eng A. 2005; 395(1-2):307-14. http://dx.doi.org/10.1016/ j.msea.2004.12.048
  28. Toloczko MB, Hamilton GEL ML. In: Proceedings of the IEA International Symposium. In: Proceedings of the IEA International Symposium. United States of America; 1996.
  29. Ye YF, Wang Q, Lu J, Liu CT, Yang Y. High-entropy alloy: challenges and prospects. Materials Today. 2016;19(6):349-62. https://doi.org/10.1016/j. mattod.2015.11.026
  30. U. Hong,H.W.Jeong, I.S. Kim, B.G. Choi, Y.S. Yoo CYJ. Significant decrease in interfacial energy of grain boundary through serrated grain boundary transition. Phil Mag. 2012; 92(22):2809-25. http://dx. doi.org/10.1080/14786435.2012.676212
  31. U. Hong, I.S. Kim, B.G. Choi, Y.S. Yoo CYJ. On the Mechanism of Serrated Grain Boundary Formation in Ni-Based Superalloys with Low γ′ Volume Fraction. Superalloys. 2012; 53–61.
  32. Mehdizadeh M, Farhangi H. Precipitation behavior and mechanical properties of IN 617 superalloy during operating at 850° C. Int J Press Vessels Pip. 2022; 198:104674. https://doi.org/10.1016/j.ijpvp.2022. 104674
  33. Zabihi M, Toroghinejad MR, Shafyei A. Evaluating the mechanical behavior of hot rolled Al/alumina composite strips using shear punch test. Mater Sci Eng A. 2014; 618:490-5. http://dx.doi.org/10.1016/ j.msea.2014.09.037
  34. Gheysarian A, Rezaeian A, Toroghinejad MR, Rahimzadeh R. Microstructural studies of CuCrFeNi2Mn0.5 high entropy alloy during cold rolling. J Alloys Compd. 2024; 987:174197. https:// doi.org/10.1016/j.jallcom.2024.174197

 

تحت نظارت وف ایرانی