Microstructural Evolution of C-Mn Dual Phase Steel During Intermediate Quenching: A Comparative Study of Subcritical, Intercritical, and Suppercritical Annealing

Document Type : Original Article

Authors

1 Faculty of Materials Engineering, Sahand University of Technology, Tabriz, 51335-1996, Iran

2 Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

Abstract

Martensitic microstructure, due to its numerous nucleation sites for austenite and its fibrous distribution, is considered as the initial microstructure in the dual-phase steel fabrication process, specifically during intermediate quenching. In the present study, the microstructural evolution of a carbon-manganese steel during intermediate quenching at three temperature ranges (upper-critical (Ac₃<T), inter-critical (Ac₁<T<Ac₃) and sub-critical (T<Ac₁)) was studied using optical microscopy, scanning electron microscopy, and X-ray diffraction analysis. Hardness measurements indicated that the sub-critical annealing process, which is the high-temperature tempering process, consists of two stages with different softening rates. The first stage is associated with the removal of carbon from the lattice structure to form carbides, and the second stage is accompanied by the coarsening of carbides. Annealing martensitic microstructure at intercritical temperatures also occurs in three stages: The first stage is the tempering of martensite, the second stage is the nucleation and growth of austenite in tempered martensite with the dissolution of carbides, and the third stage is the coarsening of the two-phase microstructure, which is associated with a reduction in hardness. An increase in temperature to upper-critical temperatures also causes the appearance of these three stages, but due to the accelerated diffusion at high temperatures, these stages are shortened and merged together.

Keywords

Main Subjects


  1. Rashid MS, High-Strength Low-Alloy Steels. Science1980; 208: 862-869. https://doi.org/10.1126/ science.208.4446.862
  2. Matlock DK, Speer JG. Third Generation of AHSS: Microstructure Design Concepts. Microstructure and Texture in Steels 2009; 798:185–205. https://doi.org/ 10.1007/978-1-84882-454-6_11
  3. Kalhor A, Karimi Taheri A, Mirzadeh H, Uthaisangsuk V. Processing, microstructure adjustments, and mechanical properties of dual phase steels: a review. Mater Sci Tech, 2021; 37(6): 561-591. https://doi.org/10.1080/02670836.2021.1944524
  4. Sugimoto K, Mukherjee M. TRIP aided and complex phase steels. Automotive Steels 2017; 217–257. https://doi/10.1016/B978-0-08-100638-2.00008-0
  5. Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des 2012; 41: 370–379. https://doi. org/10.1016/j.matdes.2012.05.010
  6. Pallett RJ Lark RJ. The use of tailored blanks in the manufacture of construction components. J Mater Process Tech 2001; 117: 249–254. https://doi.org/10. 1016/S0924-0136(01)01124-4
  7. Kulakov M, Poole WJ, Militzer M. A Microstructure Evolution Model for Intercritical Annealing of a Low-carbon Dual-phase Steel. ISIJ Int 2014; 54(11): 2627–2636. https://doi.org/10.2355/isijinternational. 54.2627
  8. Liu Y, Shi L, Liu C, Yu L, Yan Z, Li H. Effect of step quenching on microstructures and mechanical properties of HSLA steel. Mater. Sci. Eng. A 2016; 675: 371–378. https://doi.org/10.1016/j.msea.2016.08.087
  9. Barbier D, Germain L, Hazotte A, Goune M, Chbihi A. Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels. J Mater Sci 2015; 50: 374–381. https://doi.org/10.1007/s10853-014-8596-2
  10. Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater. Sci. Eng. A 2019; 750:125–131. https://doi.org/10.1016/j. msea. 2019.02.052
  11. Jia C, Zheng C, Li D. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel. J. Mater. Sci. Technol 2020;47: 1–9. https://doi.org/10.1016/j.jmst.2020.02.002
  12. Arnold J.O, McWilliams A, Austenite Formation during Intercritical Annealing. Iron Steel Inst, 190 2:352-358. https://doi.org/10.1007/s11661-004-0173-x
  13. Nehrenberg AE. The Growth of Austenite as Related to Prior Structure. Transaction 1950;188: 162–174.
  14. Waterschoot T, Verbeken K, Cooman BC. Tempering Kinetics of the Martensitic Phase in DP Steel. ISIJ Int 2006;46(1):138–146. https://doi.org/ 10.2355/isijinternational. 46.138
  15. Jung M, Lee S, Lee Y. Tempering Kinetics of S45C Martensitic Steel. Heat Treat. Mater 2006; 118: 375–380. https://doi.org/10.4028/www.scientific.net/SSP. 118.375
  16. Jack KH. Structural Transformations in the Tempering of High Carbon Martensitic Steel. ISIJ Int 1951; 169: 26–36.
  17. Krauss G. Tempering of martensite in carbon steels. Phase Trans Steels 2012; 126–150. https://doi.org/10.1016/B978-1-84569-971-0.50005-3
  18. Krauss G. Tempering of Lath Martensite in Low and Medium Carbon Steels: Assessment and Challenges. steel Res Int 2017; 87: 1–18. https://doi.org/10.1002/ srin.201700038
  19. Fujita K, Ueda M. Ikeda M. Hayashi K. Monitoring of Tempering Behavior in Fe-C-Mn Alloys by Precise Measurement of Electrical Resistivity. Adv Mater Res 2014; 922: 173–176. https://doi.org/10. 4028/www.scientific.net/AMR.922.173
  20. Caron RN, Krauss G. The Tempering of Fe-C Lath Martensite. Metall Trans 1972; 3: 2381–2389, 1972. https://doi.org/1007/BF02647041
  21. Emmy C, Christersdotter I, Weidow J, Thuvander M, Offerman SE. Effect of Ti on Evolution of Microstructure and Hardness of Martensitic Fe–C–Mn Steel during Tempering. ISIJ Int 2014; 54(12): 2890–2899. https://doi.org/10.2355/isijinternational.54. 2890
  22. Furuhara T, Kobayashi K, Maki T. Control of Cementite Precipitation in Lath Martensite by Rapid heating and tempering. ISIJ Int 2004;44(11):1937– https://doi.org/10.2355/isijinternational.44.1937
  23. Karimi Y. Nedjad SH, Shirazi H, Ahmadabadi MN, Zargari HH, Ito K. Cold rolling and intercritical annealing of C-Mn steel sheets with different initial microstructures. Mat Sci Eng A 2017; 736:392-399 https://doi.org/10.1016/j.msea.2018.09.008
  24. Bajželj A, Burja J. Influence of Austenitisation Time and Temperature on Grain Size and Martensite Start of 51CrV4 Spring Steel, Crystals 2022, 12, 1449, 1-13. https://doi.org/10.3390/cryst12101449
  25. Białobrzeska B, Konat L, Jasinski R. The Influence of Austenite Grain Size on the Mechanical Properties of Low-Alloy Steel with Boron. Metals 2017; 7 (26): 1-20. https://doi.org/10.3390/met7010026
  26. Biro E, Mcdermid JR, Vignier S, Zhou YN. Decoupling of the softening processes during rapid tempering of a martensitic steel. Mater. Sci. Eng. A 2014;615: 395–404. https://doi.org/10.1016/j.matdes. 2023.112059
  27. Revilla C, López B, Rodriguez-Ibabe J. Carbide size refinement by controlling the heating rate during induction tempering in a low alloy steel. J Mater Des 2014; 62: 296–304. https://doi.org/10.1016/j.matdes. 2014.05.053
  28. Hernandez VH, Nayak SS, Zhou Y. Tempering of martensite in dual-phase steels and its effects on softening behavior. Metall Mater Trans A 2011; 42(10): 3115–3129. https://doi.org/10.1007/s11661-011-0739-3
  29. Bantikatla H, Devi L, Kanth Bhogoju R. Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review, Materials Today: Proceedings 2021; 47(14): 4891-4896. https://doi.org/10.1016/j.matpr.2021.06.256
  30. Morooka S, Umezawa O, Harjo S, Hasegawa K, Toji Y Analysis of Tensile Deformation Behavior by In-Situ Neutron Diffraction for Ferrite-Martensite Type Dual-Phase Steels. Tetsu-to-Hagané 2012; 98 :311-319 https://doi.org/10.2355/tetsutohagane. 98.311
  31. Balbi M, Alvarez-Armas I, Armas A. Effect of holding time at an intercritical temperature on the microstructure and tensile properties of a ferrite-martensite dual phase steel. Mater Sci Eng A 2018; 733:1–8. https://doi.org/10.1016/j.msea.2018.07.029
  32. Ghaemifar S, Mirzadeh H, Khorrami MS, Nasiri Z. Improved properties of dual-phase steel via pre- intercritical annealing treatment and thermal cycling. Mater Sci Technol 2020;6(15):1663–1670. https://doi.org/10.1080/02670836.2020.1818511
  33. Zhang X, Miyamoto G, Kaneshita T, Yoshida Y, Toji Y, Furuhara T. Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: a transition in kinetics and morphology. Acta Mater 2018;154: 1–13. https://doi.org/10.1016/j.actamat.2018.05.035
  34. Luo H, Shi J, Wang C, Cao W, Sun X, Dong H. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater 2011; 59(10):4002–4014. https://doi.org/10.1016/j.actamat.2011.03.025
  35. Yi JJ, Kim I, Choi H. Austenitization during Intercritical Annealing of an Fe-C-Si-Mn Dual-Phase Steel. Met Trans A 1985;16: 1237–1245. https://doi. org/1007/BF02670328
  36. Shukla N, Das S, Maji S, Chowdhury SR. Effect of Pre-intercritical Annealing Treatments on the Microstructure and Mechanical Properties. J Mater Eng Perform 2015;24(12):4958–4965. https://doi.org/ 10.1007/s11665-015-1750-4 ·
  37. Kalhor A, Mirzadeh H. Tailoring the Microstructure and Mechanical Properties of Dual Phase Steel Based on the Initial Microstructure. Ssteel Res.Int 2016; 87:1–8. https://doi.org/10.1002/srin.201600385

ارتقاء امنیت وب با وف ایرانی