Analysis of Microstructural Changes, Morphology and Optical Properties of the Surface of Copper Oxide Thin Layers due to Annealing for Use in Optoelectronic Devices

Document Type : Original Article

Author

Department of Materials Engineering, Payame Noor University, Tehran 19395-3697, Iran

Abstract

In this study, the effect of thermal annealing on copper oxide thin films was investigated. The surface properties of copper thin films were examined with the goal of employing them as active layers in optoelectronic devices such as solar cells and optical detectors. Thin layers of copper oxide were deposited on glass substrates by spin coating method. The samples were annealed in air at atmospheric pressure and at different temperatures from 200°C to 600°C. The microstructural, morphological, and optical properties of the surface of thin films were studied by diagnostic techniques such as X-ray diffraction, Raman spectroscopy, ultraviolet-visible absorption spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The thickness of copper oxide layers was about 760 nm. The results indicated that the degree of crystallinity improves with increasing annealing temperature, while the values of the strain and dislocation density decrease. XPS analysis showed that deposited copper oxide films have Cu1+ (Cu2O) and Cu2+ (CuO) compounds, and CuO concentration increases with increasing the annealing temperature. Ultraviolet-visible  absorption spectroscopy showed that the thin films are absorbent in the visible region and transparent in the near-infrared region. As the annealing temperature increases above 400 °C, the reflection spectrum changes due to the increase in scattering caused by the growth of crystallite size and surface roughness.

Keywords

Main Subjects


  1. Akl AA, Mahmoud SA, Al-Shomar SM, Hassanien AS. Improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin films of different solution molarities for solar cell applications. Mater Sci Semicond Process. 2018; 74:183-92. https://doi.org/10.1016/j.mssp.2017. 10.007
  2. Nwanna EC, Jen TC. CuxOy nanoparticle fabrication: Synthesis, characterization, and applications. 2024; 303:117333. https://doi.org/10.1016/j.mseb.2024. 117333
  3. Zgair IA, Al-Ogaili AO, Abass KH. Energies of Cuprous Oxide Nanofilms and Annealing Temperature Effect on Structural and Dispersion Properties using Fuzzy Logic. IJISAE. 2024; 12(3s): 57-66. https://ijisae.org/index.php/IJISAE/article/view/ 3662
  4. Mastache Mastache JE. Estudio estructural y eléctrico de la heterounión p-CuO/n-ZnO. Universidad Autónoma del Estado de México; 2023. http://hdl.handle.net/20.500.11799/140291
  5. Hübner M, Simion CE, Tomescu-Stănoiu A, Pokhrel S, Bârsan N, Weimar U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens Actuators B Chem. 2011; 153(2):347-53. https://doi.org/10.1016/j.snb.2010.10.046
  6. Breedon M, Zhuiykov S, Miura N. The synthesis and gas sensitivity of CuO micro-dimensional structures featuring a stepped morphology. Mater Lett. 2012; 82:51-3. https://doi.org/10.1016/j.matlet.2012.05.024
  7. Bhowmick T, Ghosh A, Ambardekar V, Nag S, Majumder SB. Potential of copper oxide thin film-based sensor probe for carbon dioxide gas monitoring. J Mater Sci: Mater Electron. 2022; 33 (35):26286-98. https://doi.org/10.1007/s10854-022-09312-4
  8. Nunes D, Pimentel A, Gonçalves A, Pereira S, Branquinho R, Barquinha P, Fortunato E, Martins R. Metal oxide nanostructures for sensor applications. Semicond Sci Technol. 2019; 34(4):043001. https:// doi.org/10.1016/j.surfin.2022.102560
  9. Hu AL, Liu YH, Deng HH, Hong GL, Liu AL, Lin XH, Xia XH, Chen W. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron. 2014; 61: 374-8. https://doi.org/ 10.1016/j.bios.2014.05.048
  10. Ni P, Sun Y, Shi Y, Dai H, Hu J, Wang Y, Li Z. Facile fabrication of CuO nanowire modified Cu electrode for non-enzymatic glucose detection with enhanced sensitivity. RSC Adv. 2014; 4(55):28842-7. https://doi.org/10.1016/j.electacta.2020.135630
  11. Souza EA, Landers R, Cardoso LP, Cruz TG, Tabacniks MH, Gorenstein A. Evaluation of copper oxide thin films as electrodes for microbatteries. J Power Sources. 2006; 155(2): 358-63. https://doi. org/10.1016/j.jpowsour.2005.04.014
  12. Sajjad M, Khan MI, Cheng F, Lu W. A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J Energy Storage. 2021; 40:102729. https://doi.org/ 10.1016/j.est.2021.102729
  13. Kumar RV, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater. 2000; 12(8):2301-5. https://doi.org/10.1021/ cm9704645
  14. Prasad R. Mechanism and kinetics of thermal decomposition of ammoniacal copper oxalate J Therm Anal Calorim. 2006;85(2):279-84.
  15. Yu B, Wang Y, Zhang Y, Zhang Z. Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nanomicro Lett. 2023; 15(1):94. https:// doi.org/10.1007/s40820-023-01063-z
  16. Tran TH, Nguyen VT. Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review. Int Sch Res Notices. 2014; 2014(1):856592. https://doi.org/10. 1155/2014/856592
  17. Sun S, Zhang X, Yang Q, Liang S, Zhang X, Yang Z. Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog Mater Sci. 2018; 96:111-73. https://doi.org/10.1016/j.pmatsci.2018.03.006
  18. Gao F, Liu XJ, Zhang JS, Song MZ, Li N. Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering. J Appl Phys. 2012; 111(8). https://doi. org/10.1063/1.4704382
  19. Filipič G, Cvelbar U. Advantages of Plasma Synthesis of Copper Oxide Nanowires. ECS Meeting Abstracts. 2014; 29: 1587-1587. 1149/MA2014-02/29/1587
  20. Su Q, Zuo C, Liu M, Tai X. A review on Cu2O-based composites in photocatalysis: Synthesis, modification, and applications. Molecules. 2023; 28 (14):5576. https://doi.org/10.3390/molecules28145576
  21. Jayatissa AH, Guo K, Jayasuriya AC. Fabrication of cuprous and cupric oxide thin films by heat treatment. Appl Surf Sci. 2009; 255(23):9474-9. https://doi.org/10.1016/j.apsusc.2009.07.072
  22. Figueiredo V, Elangovan E, Goncalves G, Barquinha P, Pereira L, Franco N, Alves E, Martins R, Fortunato E. Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl Surf Sci. 2008; 254(13):3949-54. https://doi.org/10. 1016/j.apsusc.2007.12.019
  23. Papadimitropoulos, N. Vourdas, V.E. Vamvakas, D. Davazoglou, Optical and structural properties of copper oxide thin films grown by oxidation of metal layers, Thin Solid Films. 2006; 515:2428–2432. http://dx.doi.org/10.1016/j.tsf.2006.06.002
  24. Ray SC. Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol Energy Mater Sol Cells. 2001; 68(3-4):307-12. https://ui.adsabs. harvard.edu/link_gateway/2001SEMSC.68.307R/doi:10.1016/S0927-0248(00)00364-0
  25. Tran TH, Nguyen TH, Bach TC, Nguyen TD, Nguyen TB, Nguyen VT, Pham NH. Effect of Annealing Temperature on Cu2O Thin Films Prepared by Thermal Oxidation Method. VNU JS: 2020;36(2). https://doi.org/10.25073/2588-1124/ vnumap.4426
  26. Nurfazliana MF, Kamaruddin SA, Nayan N, Saim H, Sahdan MZ. Effects of annealing process on the structural, optical and electrical properties of copper oxide thin films grown by immersion technique. Adv Mater Res. 2016; 1133:439-43. https://doi.org/ 10.4028/www.scientific.net/AMR.1133.439
  27. Dahham NA. Annealing temperature effect on the Structure, Morphology and Optical properties of Copper Oxide CuO thin Films. Tikrit J pure sci. 2017; 22(6): 115-24. https://doi.org/10.25130/tjps. v22i6.799
  28. Chauhan D, Satsangi VR, Dass S, Shrivastav R. Preparation and characterization of nanostructured CuO thin films for photoelectrochemical splitting of water. Bull Mater Sci. 2006; 29(7).
  29. Wang WW, Zhu YJ, Cheng GF, Huang YH. Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers. Mater Lett. 2006; 60 (5):609-12. https://doi.org/10.1016/j.matlet.2005.09. 056
  30. Maruyama T. Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol Energy Mater Sol Cells. 1998;56(1):85-92. https://ui.adsabs.harvard.edu/link _gateway/1998SEMSC.56.85M/doi:10.1016/S0927-0248(98)00128-7
  31. Yoon KH, Choi WJ, Kang DH. Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate. Thin solid films. 2000; 372(1-2):250-6.https://doi.org/10.1016/S0040-6090(00)01058-0
  32. Nair MT, Guerrero L, Arenas OL, Nair PK. Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Appl Surf Sci. 1999; 150(1-4):143-51. https://doi.org/10. 1016/S0169-4332(99)00239-1
  33. Musa AO, Akomolafe T, Carter MJ. Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical Sol Energy Mater Sol Cells. 1998;51(3-4): 305-16. https://ui.adsabs.harvard.edu/link_gateway /1998SEMSC.51.305M/doi:10.1016/S0927-0248(97)0 0233-X
  34. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953; 1(1): 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
  35. Williamson GK, Smallman RE. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Phil Mag. 1956; 1(1):34-46. https://doi. org/10.1080/14786435608238074
  36. Castrejón-Sánchez VH, Solís AC, López R, Encarnación-Gomez C, Morales FM, Vargas OS, Mastache-Mastache JE, Sánchez GV. Thermal oxidation of copper over a broad temperature range: towards the formation of cupric oxide (CuO). Mater Res Express. 2019; 6(7):075909. https://ui.adsabs. harvard.edu/link_gateway/2019MRE.6g5909C/doi:10.1088/2053-1591/ab1662
  37. Balamurugan B, Mehta BR, Avasthi DK, Singh F, Arora AK, Rajalakshmi M, Raghavan G, Tyagi AK, Shivaprasad SM. Modifying the nanocrystalline characteristics—structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J Appl Phys. 2002; 92(6):3304-10. https://doi.org/10.1063/1.1499752
  38. Xu JF, Ji W, Shen ZX, Li WS, Tang SH, Ye XR, Jia DZ, Xin XQ. Raman spectra of CuO nanocrystals. J Raman Spectrosc. 1999; 30(5):413-5. http://scholarbank. nus.edu.sg/handle/10635/97737
  39. Park JY, Kwon TH, Koh SW, Kang YC. Annealing temperature dependence on the physicochemical properties of copper oxide thin films. Bull. Korean Chem Soc. 2011; 32(4):1331-5. https://doi.org/10. 5012/bkcs.2011.32.4.1331
  40. Venkataraj S, Kappertz O, Liesch C, Detemple R, Jayavel R, Wuttig M. Thermal stability of sputtered zirconium oxide films. Vacuum. 2004; 75(1):7-16. https://doi.org/10.1016/j.vacuum.2003.12.127
  41. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT. Electronic structure of Cu2O and CuO. Phys Rev B. 1988; 38(16):11322. https://doi.org/10.1103/PhysRevB.38.11322
  42. Biesinger MC, Lau LW, Gerson AR, Smart RS. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Cr, Mn, Fe, Co and Ni. . Appl Surf Sci. 2010; 257(3): 887-98. https://doi.org/10.1016/j.apsusc.2010.10.051
  43. Kastner M. Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors. Phys Rev Lett. 1972; 28(6):355. https://doi.org/10.1103/ PhysRevLett.28.355
  44. Tauc Optical Properties of Solids. Abeles. North Holland. Amsterdam. 1972.
  45. Ogwu AA, Bouquerel E, Ademosu O, Moh S, Crossan E, Placido F. An investigation of the surface energy and optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering. Acta Mater. 2005; 53(19):5151-9. https://doi.org/10. 1016/j.actamat.2005.07.035

 

 

 

تحت نظارت وف ایرانی