The Effect of Zinc Oxide Nanoparticles on the Microstructure and Dielectric Properties of Barium Titanate Ceramics

Document Type : Original Article

Authors

Materials Engineering Department, Faculty of Engineering, Shahrekord University, Shahrekord, Iran

Abstract

(1-x) BaTiO3-x ZnO ceramics with x values of 0, 0.5, 1, and 2 wt. % were prepared using the solid-state method. The effect of adding zinc oxide nanoparticles on the densification, microstructure, and dielectric properties of barium titanate ceramics was investigated. Barium titanate powder was synthesized at a temperature of 1200 °C using the solid-state method. The samples were then prepared by pressing and sintered at 1280 °C. The addition of 2 wt. % zinc oxide nanoparticles increased the density of the barium titanate ceramics from 93.5 % to 98.2 % and reduced the porosity from 6.5 % to 1.8 %. The samples containing zinc oxide nanoparticles exhibited a dense microstructure with grain growth. An increase in the content of zinc oxide nanoparticles led to a decrease in the dielectric constant and dielectric loss (tangent delta) of the barium titanate ceramics. The sample containing 2 wt. % zinc oxide nanoparticles revealed the lowest dielectric constant value. At a frequency of 1 kHz, the dielectric constant of barium titanate decreased from 1745 to 895 for the sample containing 2 wt. % zinc oxide nanoparticles. The dielectric loss of the samples containing zinc oxide nanoparticles at high frequencies (above 1 kHz) were all around 0.025, which showed a significant reduction compared to the dielectric loss of barium titanate ceramics (around 0.065). The addition of 1 wt. % zinc oxide nanoparticles caused a decrease in the remnant polarization of barium titanate from 3.7 μC/cm² to 1.2 μC/cm². The coercive field for these samples was measured to be around 3.3 kV/cm.

Keywords

Main Subjects


  1. Arshad M, Du H, Javed MS, Maqsood A, Ashraf I, Hussain S, et al. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 Ceram Int. 2020; 46(2):2238–46. https://doi.org/10.1016/j.ceramint. 2019.09.208
  2. Slimani Y, Selmi A, Hannachi E, Almessiere MA, AlFalah G, AlOusi LF, et al. Study on the addition of SiO2 nanowires to BaTiO3: Structure, morphology, electrical and dielectric properties. J Phys Chem 2021; 156:110183-92. https://doi.org/10.1016/ j.jpcs.2021.110183
  3. Alkathy MS, Gayam R, Raju KJ. Effect of sintering temperature on structural and dielectric properties of Bi and Li co-substituted barium titanate ceramic. Ceram Int. 2016; 42(14):15432–41. http://doi.org/10. 1016/j.ceramint.2016.06.194
  4. Haq EU, Karim MRA, Khan KI, Akram W, Hassan SS, Kashif F. Study of structural and electrical properties of Zn-doped barium titanate ceramics synthesized by conventional solid-state method. J Optoelectron Adv M. 2022; 24(1–2):69–73.
  5. Paunovic V, Mitic V V., Kocic L. Dielectric characteristics of donor-acceptor modified BaTiO3 Ceram Int. 2016; 42(10):11692–9. http:// doi.org/10.1016/j.ceramint.2016.04.087
  6. Zhang D, Zhou D, Jiang S, Wang X, Gong S. Effects of porosity on the elec- trical characteristics of current-limiting BaTiO3-based positive-temperature coefficient (PTC) ceramic thermistors coated with electroless nickel-phos- phorus electrode. Sens Actuators A Phys. 2004; 112(1):94–100. https://doi. org/10.1016/j.sna.2003.09.039
  1. Zhang B, Li L. The Microscopic mechanism in the realization of the ultra-wide temperature stability in Bi3+,Na+,Zn2+,Nb5+ doped BaTiO3 dielectric system. RSC Adv. 2016; 6(29): 24518-26. https://doi.org/ 10.1039/C5RA23570G
  2. Tihtih M, Ibrahim JEF, Basyooni MA, Kurovics E, Belaid W, Hussainova I, Kocserha I. Role of A-site (Sr), B-site (Y), and A, B sites (Sr, Y) substitution in lead-free BaTiO3 ceramic compounds: Structural, optical, microstructure, mechanical, and thermal conductivity properties. Ceram Int. 2023; 49(2): 1947–59. https://doi.org/10.1016/j.ceramint.2022.09.160
  3. Jo SK, Park JS, Han YH. Effects of multi-doping of rare-earth oxides on the microstructure and dielectric properties of BaTiO3. J Alloys Compd. 2010; 501(2): 259–64. http://doi.org/10.1016/j.jallcom.2010.04.085
  4. Alkathy MS, Hezam A, Manoja KSD, Wang J, Cheng C, Byrappa K, Raju KJ. Effect of sintering temperature on structural, electrical, and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics. J Alloys Compd. 2018; 762: 49–61. https://doi.org/10.1016/j.jallcom.2018.05. 138
  5. Park IJ, Han YH. Effects of synthesized method on the properties of Sm doped BaTiO3. Met Mater Int. 2014; 20(6):1157-61. https://doi.org/10.1007/s12540-014-6021-7
  6. Wu S, Wei X, Wang X, Yang H, Gao S. Effect of Bi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics sintered at lower temperature. J Mater Sci Technol. 2010; 26(5): 472–6. http://org/10.1016/S1005-0302(10)60075-8
  7. Jeon HP, Lee SK, Kim SW, Choi DK. Effects of BaO-B2O3-SiO2 glass additive on densification and dielectric properties of BaTiO3 Mater Chem Phys. 2005; 94(2–3):185–9. https://doi.org/10. 1016/j.matchemphys.2005.04.049
  8. Hu W, Chen Z, Lu Z, Wang X, Fu X. Effect of Bi2O3 and Ho2O3 co-doping on the dielectric properties and temperature reliability of X8R BaTiO3-based ceramics. Ceram Int. 2021; 47(17):24982–7. https:// doi.org/10.1016/j.ceramint.2021.05.226
  9. Jain A, Panwar AK, Jha AK. Effect of ZnO doping on structural, dielectric, ferroelectric and piezoelectric properties of BaZr1Ti0.9O3 ceramics. Ceram Int. 2017; 43(2):1948–55. https://doi.org/10.1016/j.ceramint.2016. 10.157
  10. Slimani Y, Selmi A, Hannachi E, Almessiere MA, Baykal A, Ercan I. Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 J Mater Sci: Mater Electron. 2019; 30(10):9520–30. https:// doi.org/10.1007/s10854-019-01284-2
  11. Hayati R, Barzegar A. Microstructure and electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive. Mater Sci Eng B. 2010; 172(2):121-26. https://doi.org/10.1016/ j.mseb.2010.04.033
  12. Hoshina T. Size effect of barium titanate: Fine particles and ceramics. J Ceram Soc Jpn. 2013; 121 (1410):156–61. https://doi.org/10.2109/jcersj2.121.156
  13. Wang Y, Miao K, Wang W, Qin Y. Fabrication of lanthanum doped BaTiO3 fine-grained ceramics with a high dielectric constant and temperature-stable dielectric properties using hydro-phase method at atmospheric pressure. J Eur Ceram Soc. 2017; 37(6): 2385–90. https://doi.org/10.1016/j.jeurceramsoc.2017.01.035
  14. Li T, Yang K, Xue R, Xue Y, Chen Z. The effect of CuO doping on the microstructures and dielectric properties of BaTiO3 J Mater Sci: Mater Electron. 2011; 22(7):838–42. https://doi.org/10.1007/ s10854-010-0222-8
  15. Liu G, Li Y, Gao J, Li D, Yu L, Dong J. et al. Structure evolution , ferroelectric properties , and energy storage performance of CaSnO3 modified BaTiO3 -based Pb-free ceramics. J Alloys Compd. 2020; 826:154160. https://doi.org/10.1016/j.jallcom. 2020.154160.

 

 

تحت نظارت وف ایرانی