Manufacturing and Characterization of a Potentiometric Sensor Highly Sensitive to NO2 Gas, based on K2CO3/Al2O3 Composite Material

Document Type : Original Article

Authors

1 Department of Electrical Engineering, University of Guilan, Rasht, Iran

2 Faculty of Science, University of Guilan, Rasht, Iran

Abstract

NO2 is known as one of the most dangerous air pollutants. Even extremely low concentrations of this gas could cause life-threatening diseases such as cancer. Ppb-level detection and measurement of this gas are still serious challenges for researchers. In current work, for the first time, K2CO3/Al2O3 composite material, was employed as solid electrolyte to fabricate a potentiometric sensor for the detection of extremely low NO2 concentrations (in the ppb range) at room temperature (RT). This material was chemically synthesized through a low-cost and facile process and then loaded into appropriate templates, forming rectangular-cube shaped ceramics. A thin layer of gold nano particles was sputtered on the both sides of ceramics’ top surface to provide external electrical connections. The sensor’s dynamic responses were recorded in the concentrations ranging from 15 to 1500 ppb at RT, and it was observed that its response variations corresponds the Nernst equation. This sensor’s limit of detection (LOD) was recorded as 15 ppb which is much lower than that of  the standard threshold for safe industrial environments (200 ppb). Tipically, the sensor’s response (ΔV = Vgas – Vair, where Vgas and Vair are its voltages in NO2 contaminated air and clean air, respectively) toward 60 ppb NO2 at RT is equal to 14 mV. In the entire evaluated concentration range the rise and recovery times did not exceed 80 s. Therefore, this sensor could be considered as a promising candidate for air quality control applications at RT.

Keywords

Main Subjects


  1. Groß A, Hanft D, Beulertz G, Marr I, Kubinski DJ, Visser JH, Moos, R. The effect of SO2 on the sensitive layer of a NOx dosimeter. Sens Actuators B. 2013; 187: 153-161. https://doi.org/10.1016/j.snb. 2012.10.039
  2. Schönauer-Kamin D, Marr I, Zehentbauer M, Zängle C, Moos R. Characterization of the sensitive material for a resistive NOx gas dosimeter by DRIFT spectroscopy. Sens Actuators B. 2020; 320: 128568. https://doi.org/10.1016/j.snb.2020.128568
  3. ‏‏Groß A, Weller T, Tuller HL, Moos R. Electrical conductivity study of NOx trap materials BaCO3 and K2CO3/La-Al2O3 during NOx exposure. Sens Actuators B. 2013; 187: 461-470. https://doi.org/10.1016/j.snb. 2013.01.083
  4. Groß A, Bishop SR, Yang DJ, Tuller HL, Moos R. The electrical properties of NOx-storing carbonates during NOx exposure. Solid State Ion. 2012; 225: 317-323. https://doi.org/10.1016/j.ssi.2012.05.009
  5. Groß A, Richter M, Kubinski DJ, Visser JH, Moos R. The effect of the thickness of the sensitive layer on the performance of the accumulating NOx sensor. Sens. 2012; 12: 12329-12346. https://doi.org/10.3390/ s120912329
  6. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol. 2009; 39:743-781.‏ https://doi.org/10. 3109/10408440903294945
  7. Anttila P, Tuovinen JP, Niemi JV. Primary NO2 emissions and their role in the development of NO2 concentrations in a traffic environment. Atmos Environ. 2011; 45: 986-992.‏ https://doi.org/10.1016/ j.atmosenv.2010.10.050
  8. Lee SW, Lee W, Hong Y, Lee G, Yoon DS. Recent advances in carbon material-based NO2 gas sensors. Sens Actuators B. 2018; 255: 1788-1804.‏ https:// doi.org/10.1016/j.snb.2017.08.203
  9. Shishiyanu ST, Shishiyanu TS, Lupan OI. (2005). Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens Actuators B. 2005; 107: 379-386.‏ https://doi.org/10.1016/j.snb.2004.10.030
  10. Pham T, Li G, Bekyarova E, Itkis ME, Mulchandani A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS nano. 2019; 13: 3196-3205.‏ https://doi.org/10.1021/ acsnano.8b08778
  11. Pasierb P, Rekas M. Solid-state potentiometric gas sensors—current status and future trends. J Solid State Electrochem. 2009; 13: 3-25.‏ https://doi.org/10. 1007/s10008-008-0556-9
  12. Janata J, Josowicz M. Organic semiconductors in potentiometric gas sensors. J Solid State Electrochem. 2009; 13: 41-49. https://doi.org/10.1007/s10008-008-0597-0
  13. Hossein-Babaei F. Gas Sensors: Fundamentals, Applications, and Scope. J Cont 2014; 8: 1-25.
  14. Sekhar PK, Brosha EL, Mukundan R, Linker KL, Brusseau C, Garzon FH. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors. J Hazard Mater. 2011; 190: 125-132. 10.1016/j.jhazmat.2011.03.007
  15. ‏Yang JC, Dutta PK. High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sens Actuators B. 2010; 143: 459-463.‏ https://doi.org/10.1016/j.snb.2009.09.023
  16. Zhuiykov S, Miura N. Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors?. Sens Actuators B. 2007; 121: 639-651.‏ https://doi.org/10.1016/j.snb.2006.03.044
  17. Obata K, Matsushima S. NASICON-based NO2 device attached with metal oxide and nitrite compound for the low temperature operation. Sens Actuators B. 2008; 130: 269-276.‏ https://doi.org/10. 1016/j.snb.2007.07.142
  18. Zou J, Zheng Y, Li J, Zhan Z, Jian J. (2015). Potentiometric NO2 sensors based on thin stabilized zirconia electrolytes and asymmetric (La8Sr0.2) 0.95 MnO3 electrodes. Sens. 2015; 15: 17558-17571.‏ https://doi.org/10.3390/s150717558
  19. Yamazoe N, Miura N. Potentiometric gas sensors for oxidic gases. J Electroceram. 1998; 2: 243-255.‏ https://doi.org/10.1023/A:1009974506712
  20. Zhou L, Yuan Q, Li X, Xu J, Xia F, Xiao J. The effects of sintering temperature of (La 8 Sr 0.2)2 FeMnO6− δ on the NO2 sensing property for YSZ-based potentiometric sensor. Sens Actuators B. 2015; 206: 311-318.‏ https://doi.org/10.1016/j.snb.2014.09. 018
  21. Guan Y, Li C, Cheng X, Wang B, Sun R, Liang X, Zhao J, Chen H, Lu, G. Highly sensitive mixed-potential-type NO2 sensor with YSZ processed using femtosecond laser direct writing technology. Sens Actuators B. 2014; 198: 110-113.‏ https://doi.org/10. 1016/j.snb.2014.02.098
  22. Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q, Liang X, Sun P, Lu G. High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sens Actuators B. 2016; 232: 523-530.‏ https://doi.org/10. 1016/j.snb.2016.03.139
  23. Alonso DM, Mariscal R, Moreno-Tost R, Poves MZ, Granados ML. Potassium leaching during triglyceride transesterification using K/γ-Al2O3 Catal Commun. 2007; 8: 2074-2080.‏ https://doi.org/10.1016/j.catcom.2007.04.003
  24. Kuśtrowski P, Chmielarz L, Bożek E, Sawalha M, Roessner F. Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater Res Bull. 2004; 39: 263-281.‏ https://doi.org/10.1016/j.materresbull. 2003.09.032
  25. Montanari T, Castoldi L, Lietti L, Busca G. Basic catalysis and catalysis assisted by basicity: FT-IR and TPD characterization of potassium-doped alumina. Appl Catal A. 2011; 400: 61-69.‏ https://doi.org/10. 1016/j.apcata.2011.04.016
  26. Du H, Williams CT, Ebner AD, Ritter J A. In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc. Chem Mater. 2010; 22: 3519-3526.‏ https://doi.org/10.1021/cm100703e
  27. Zhang B, Cheng M, Liu G, Gao Y, Zhao L, Li S, Wang Y, Liu F, Liang X, Zhang T, Lu G. Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sens Actuators B. 2018; 263: 387-399.‏ https://doi.org/10.1016/j. snb.2018.02.117
  28. Geng X, Lahem D, Zhang C, Li CJ, Olivier MG, Debliquy M. (2019). Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceram Int. 2019; 45: 4253-4261.‏ https://doi.org/10.1016/j.ceramint.2018.11.097
  29. You R, Han DD, Liu F, Zhang YL, Lu G. Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites. Sens Actuators B. 2018; 277: 114-120.‏ https://doi.org/10.1016/j.snb.2018.07.179
  30. Yu H, Yang T, Wang Z, Li Z, Zhao Q, Zhang M. pN heterostructural sensor with SnO-SnO2 for fast NO2 sensing response properties at room temperature. Sens Actuators B. 2018; 258: 517-526.‏ https:// doi.org/10.1016/j.snb.2017.11.165
  31. Geng X, Lu P, Zhang C, Lahem D, Olivier MG, Debliquy M. Room-temperature NO2 gas sensors based on rGO@ ZnO1-x composites: Experiments and molecular dynamics simulation. Sens Actuators B. 2019; 282: 690-702.‏ https://doi.org/10.1016/j.snb. 2018.11.123
  32. Gu K, Song X, Zhang Q, Zhang M. Novel ginkgo-like core-shell WO3 for enhanced ppb-level NO2 sensing at room temperature. Sens Actuators B. 2023; 382: 133453.‏ https://doi.org/10.1016/j.snb.2023.133453
  33. Zhang Y, Gu T, Liu F, Jiang L, Lv S, Wang J, Pan S, Jia X, Sun P, Gao Y, Lu G. (2023). Room temperature mixed-potential solid-electrolyte NO2 sensor for environmental monitoring. Sens Actuators B. 2023; 390: 133943.‏ https://doi.org/10.1016/j.snb. 2023.133943.

 

 

 

ارتقاء امنیت وب با وف ایرانی