Investigating the Role of Bismuth Oxide and Gadolinium Oxide as an Enhancer of the Gamma Shielding Ability of Polymer Compounds Based on Unsaturated Resin Using the Monte Carlo Simulation Geant4 Tool

Document Type : Original Article

Authors

Imam Hossein Comprehensive University, Tehran, Iran

Abstract

The presence of lead as the first radiation shielding with a series of good features such as high density and having some flexibility and a series of inappropriate features such as toxicity, low physical and chemical stability, and high weight, has long made scientists think about alternatives. In this research, the protective properties against gamma radiation of polymer compounds with oxide (gadolinium-bismuth tellurium) (Gd2O3)x (TeO2)(30-x) - (resin)30 - (Bi2O3)40 (which here x is 10, 15, and 20% by weight percent) and (Gd2O3)x-(TeO2)(40-x) (resin)20 – (Bi2O3)40 (where x is 20, 25, and 30 by weight percent) was examined using the Monte Carlo simulation tool Gent4 in the range of 0.015 to 15  MeV. In this study, the quantities related to photon attenuation such as linear attenuation coefficient, mass attenuation coefficient, one-tenth-value layer, half-value layer, effective atomic number, effective electron density, the total atomic cross section, the total electron cross section, and the mean free path as well as the spectrum of secondary particles created according to their type and energy for different levels of incident gamma energy have been evaluated. The mass attenuation coefficient values ​​calculated from Geant4 were compared to the Phy-x results to validate the simulation results. The results showed a good agreement with each other. The agreement between the data revealed that the Geant4 tool was a good method to examin the properties of gamma ray shielding. The obtained results declared that the development of resins with the addition of oxides of transition metals such as gadolinium, tellurium, and bismuth increases the protective against gamma rays.

Keywords

Main Subjects


  1. Cózar IR, Otero F, Maimí P, González EV, Turon A, Camanho PP. An enhanced constitutive model to predict plastic deformation and multiple failure mechanisms in fibre-reinforced polymer composite materials. Compos Struct. 2024; 330: 117696. https://www.sciencedirect.com/science/article/pii/S0263822323010425?via%3Dihub
  2. Bhowmik S, Kumar S, Mahakur VK. Various factors affecting the fatigue performance of natural fiber-reinforced polymer composites: a systematic review. Iran Polym J. 2023; 33(2): 249–71. https://doi.org/ 10.1007/s13726-023-01243-z
  3. Makinde-Isola BA, Taiwo AS, Oladele IO, Akinwekomi AD, Adelani SO, Onuh LN. Development of sustainable and biodegradable materials: A review on banana and sisal fibre-based polymer composites. J Thermoplast Compos Mater. 2023; 37(4): 1519–39. https://doi.org/10.1177/ 08927057231186324
  4. Machello C, Bazli M, Santos J, Rajabipour A, Arashpour M, Hassanli R. Tensile strength retention of fibre-reinforced polymer composites exposed to elevated temperatures: A meta-analysis review. Constr Build Mater. 2024; 438: 137150. https://doi.org/10.1016/j.conbuildmat.2024.137150
  5. Moola AK, Prabhakar MR, Dey B, Paramasivan B, Vangala SM, Jakkampudi R, et al. Biopolymeric composite materials for environmental applications. Phys Sci Rev. 2023; 9(6): 2153–74. https://doi.org/10. 1515/psr-2022-0223
  6. Khan F, Hossain N, Mim JJ, Rahman SMM, Iqbal MdJ, Billah M, et al. Advances of Composite Materials in Automobile Applications – a review. J Eng Res. 2024 [In Press]. https://doi.org/10.1016/ j.jer.2024.02.017
  7. Yamaya T, Tashima H, Takyu S, Takahashi M. Whole gamma imaging. PET Clin. 2024; 19(1): 83–93. https://doi.org/10.1016/j.cpet.2023.08.003
  8. Hiremath GB, Singh VP, Patil PN, Ayachit NH, Badiger NM. Investigation of the nuclear radiation parameters of some Ti alloys for biomedical applications. Radiat Eff Defects Solids. 2023; 179: 301–314. https://doi.org/10.1080/10420150.2023.2265020
  9. Saleh A, Almohiy H, Shalaby RM, Saad M. Comprehensive investigation on physical, structural, mechanical and nuclear shielding features against X/gamma-rays, neutron, proton and alpha particles of various binary alloys. Radiat Phys Chem. 2024; 216: 111443. https://doi.org/10.1016/j.radphyschem.2023. 111443
  10. Alzahrani FMA, Elqahtani ZM, Alzahrani JS, Eke C, Alrowaili ZA, Al-Buriahi. Gamma attenuation characteristics of silicon-rich glasses in Na2O–SiO2–Al2O3– CaO–ZnO system for radiation applications. J Radiat Res Appl Sci. 2024; 17(1): 100760. https:// doi.org/10.1016/j.jrras.2023.100760
  11. Alabsy MT, Abbas MI, El-Khatib AY, El-Khatib AM. Attenuation properties of poly methyl methacrylate reinforced with micro/nano ZrO2 as gamma-ray shields. Sci Rep. 2024; 14(1): 1279. https://doi.org/ 10.1038/s41598-024-51551-4
  12. Eshghi M, Alipoor M. A Comprehensive Study of Gamma-rays Shielding Features of Binary Compounds. Prog Physi Appl Mater. 2024; 4(1): 59-67. https://doi.org/10.22075/ppam.2024.32949.1082
  13. Elmahroug Y, Tellili B, Souga C, Manai K. ParShield: A computer program for calculating attenuation parameters of the gamma rays and the fast neutrons. Ann Nucl Energy 2015; 76: 94–9. https://doi.org/ 10.1016/j.anucene.2014.09.044
  14. Sadeq, Bashter II, Salem SM, Mansour SF, Saudi HA, Sayyed MI, et al. Enhancing the gamma-ray attenuation parameters of mixed bismuth/barium borosilicate glasses: Using an experimental method, Geant4 code and XCOM software. Prog Nuclear Energy 2022; 145: 104124. https://doi.org/10.1016/j. pnucene.2022.104124
  15. Abbasova N, Yüksel Z, Abbasov E, Gülbiçim H, Tufan MÇ. Investigation of gamma-ray attenuation parameters of some materials used in dental applications. Results in Phys. 2019; 12: 2202–5. https://doi.org/10.1016/j.rinp.2019.02.068
  16. Alsayed Z, Badawi MS, Awad R, Thabet AA, El-Khatib AM. Study of some γ-ray attenuation parameters for new shielding materials composed of nano ZnO blended with high density polyethylene. Nucl Technol Radiat Prot. 2019; 34(4): 342–52. https://doi.org/10.2298/ntrp190718033a
  17. Baiocco G, Bocchini L, Giraudo M, Barbieri S, Narici L, Lobascio C, et al. Innovative solutions for personal radiation shielding in space. Radiat Prot Dosimetry2018; 183(1–2): 228–32. https://doi.org/10. 1093/rpd/ncy216
  18. Ahern M, McEntee MF, Moore N. Radiographers’ attitudes toward the use of lead contact shielding. J Med Radiat Sci. 2023; 54(3): 415–20. https://doi.org/ 10.1016/j.jmir.2023.07.006
  19. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration. Radiat Environ Biophys 2020; 59(4): 583–600. https://doi.org/10. 1007/s00411-020-00865-8
  20. Burahmah N, Heilbronn L. Dose measurements at Provision Proton Therapy Center. Health Phys. 2024; 126(4): 252–8. https://doi.org/10.1097/hp. 0000000000001796
  21. Zensen S, Bos D, Opitz M, Forsting M, Guberina N, Deuschl C, et al. Single- and Dual-Source CT myelography: comparison of radiation exposure and establishment of diagnostic reference levels. Diagnostics 2021; 11(10): 1809. https://doi.org/10. 3390/diagnostics11101809
  22. Akuwudike P, López-Riego M, Marczyk M, Kocibalova Z, Brückner F, Polańska J, et al. Short- and long-term effects of radiation exposure at low dose and low dose rate in normal human VH10 fibroblasts. Front Public Health 2023; 11: 1297942. https://doi.org/10.3389/fpubh.2023.1297942
  23. Lubczak R, Duliban J. Derivatives of phenylene-1,2-diamine as modifiers for unsaturated polyester resins. Acta Chim Slov. 2020; 67(1): 221–34. https://doi.org/ 10.17344/acsi.2019.5374
  24. Yılmaz M, Akman F. Gamma radiation shielding properties for polymer composites reinforced with bismuth tungstate in different proportions. Appl Radiat Isot. 2023; 200: 110994. https://doi.org/10. 1016/j.apradiso.2023.110994
  25. Mehnati P, Malekzadeh R, Sooteh MY. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol. 2019; 12(1): 6–25. https://doi.org/10.1007/s12194-019-00500-2
  26. Mahalingam S, Kwon DS, Kang SG, Kim J. Multicomponent X-ray shielding using sulfated cerium oxide and bismuth halide composites. Mol. 2023; 28(16): 6045. https://doi.org/10.3390/ molecules28166045
  27. Akman F, Kaçal, Almousa N, Sayyed MI, Polat H. Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 Prog Nuclear Energy 2020; 121: 103257. https://doi.org/10.1016/j.pnucene.2020.103257
  28. Elsafi Mohamed, Almuqrin AH, Almutairi HM, Al-Saleh WM, Sayyed MI. Grafting red clay with Bi2O3 nanoparticles into epoxy resin for gamma-ray shielding applications. Sci Rep. 2023; 13(1): 5472. https://doi.org/10.1038/s41598-023-32522-7
  29. Almuqrin AH, Sayyed MI, Khandaker MU, Elsafi M. Exploring the impact of Bi2O3 particle size on the efficacy of dimethylpolysiloxane for medical gamma/X-rays shielding applications. Radiat Phys Chem. 2024; 220: 111629. https://doi.org/10.1016/j. radphyschem.2024.111629
  30. Pączkowski P, Puszka A, Gawdzik B. Investigation of degradation of composites based on unsaturated polyester resin and vinyl ester resin. Mater. 2022; 15(4): 1286. https://doi.org/10.3390/ma15041286
  31. Hashemi R, Tajik M, Asadi-Amirabadi E. Design and manufacture of composite flexible shield for neutron-gamma mixed fields. J Radiat Saf Meas. 2019; 8: 25-34. https://doi.org/10.22052/7.2.25
  32. Zhou L, Zhu X, Shen P, Huang C, Guo S, Zhou W, Gao Y. Constructing multilayered WB2/Bi/poly(ethylene-co-1-octene) composites with excellent nuclear radiation shielding efficiency and radiation damage prevention. J Chem Eng. 2023; 464: 142625. https://doi.org/10. 1016/j.cej.2023.142625
  33. Apte K, Bhide S. Basics of radiation. In: Elsevier eBooks [Internet]. 2024. p. 1–23. .https://doi.org/10. 1016/b978-0-323-95387-0.00013-3
  34. Alipoor M, Eshghi M. Ionizing radiation shielding properties of ceramic fibers using Monte Carlo simulation. Jicers 2023; 18(4) :48-56 (In Persian). http://jicers.ir/article-1-463-fa.html
  35. Arce P, Bolst D, Bordage M, Brown JMC, Cirrone P, Cortés‐Giraldo MA, Wright DH. Report on G4‐Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group. Med Phys. 2020; 48(1): 19–56. https://doi.org/10.1002/mp.14226
  36. Alipoor M, Eshghi M. Monte Carlo simulation and determination of gamma ray protection characteristics of composites containing Bismuth Oxide and elements of Gadolinium, Titanium, Tungsten, Zirconium, Zinc and Yttrium. J Sci Technol Compos. 2024; 10(4): 2348-2356 (In Persian). https://doi.org/10.22068/jstc. 2024.2007267.1845

 

  1. Cózar IR, Otero F, Maimí P, González EV, Turon A, Camanho PP. An enhanced constitutive model to predict plastic deformation and multiple failure mechanisms in fibre-reinforced polymer composite materials. Compos Struct. 2024; 330: 117696. https://www.sciencedirect.com/science/article/pii/S0263822323010425?via%3Dihub
  2. Bhowmik S, Kumar S, Mahakur VK. Various factors affecting the fatigue performance of natural fiber-reinforced polymer composites: a systematic review. Iran Polym J. 2023; 33(2): 249–71. https://doi.org/ 10.1007/s13726-023-01243-z
  3. Makinde-Isola BA, Taiwo AS, Oladele IO, Akinwekomi AD, Adelani SO, Onuh LN. Development of sustainable and biodegradable materials: A review on banana and sisal fibre-based polymer composites. J Thermoplast Compos Mater. 2023; 37(4): 1519–39. https://doi.org/10.1177/ 08927057231186324
  4. Machello C, Bazli M, Santos J, Rajabipour A, Arashpour M, Hassanli R. Tensile strength retention of fibre-reinforced polymer composites exposed to elevated temperatures: A meta-analysis review. Constr Build Mater. 2024; 438: 137150. https://doi.org/10.1016/j.conbuildmat.2024.137150
  5. Moola AK, Prabhakar MR, Dey B, Paramasivan B, Vangala SM, Jakkampudi R, et al. Biopolymeric composite materials for environmental applications. Phys Sci Rev. 2023; 9(6): 2153–74. https://doi.org/10. 1515/psr-2022-0223
  6. Khan F, Hossain N, Mim JJ, Rahman SMM, Iqbal MdJ, Billah M, et al. Advances of Composite Materials in Automobile Applications – a review. J Eng Res. 2024 [In Press]. https://doi.org/10.1016/ j.jer.2024.02.017
  7. Yamaya T, Tashima H, Takyu S, Takahashi M. Whole gamma imaging. PET Clin. 2024; 19(1): 83–93. https://doi.org/10.1016/j.cpet.2023.08.003
  8. Hiremath GB, Singh VP, Patil PN, Ayachit NH, Badiger NM. Investigation of the nuclear radiation parameters of some Ti alloys for biomedical applications. Radiat Eff Defects Solids. 2023; 179: 301–314. https://doi.org/10.1080/10420150.2023.2265020
  9. Saleh A, Almohiy H, Shalaby RM, Saad M. Comprehensive investigation on physical, structural, mechanical and nuclear shielding features against X/gamma-rays, neutron, proton and alpha particles of various binary alloys. Radiat Phys Chem. 2024; 216: 111443. https://doi.org/10.1016/j.radphyschem.2023. 111443
  10. Alzahrani FMA, Elqahtani ZM, Alzahrani JS, Eke C, Alrowaili ZA, Al-Buriahi. Gamma attenuation characteristics of silicon-rich glasses in Na2O–SiO2–Al2O3– CaO–ZnO system for radiation applications. J Radiat Res Appl Sci. 2024; 17(1): 100760. https:// doi.org/10.1016/j.jrras.2023.100760
  11. Alabsy MT, Abbas MI, El-Khatib AY, El-Khatib AM. Attenuation properties of poly methyl methacrylate reinforced with micro/nano ZrO2 as gamma-ray shields. Sci Rep. 2024; 14(1): 1279. https://doi.org/ 10.1038/s41598-024-51551-4
  12. Eshghi M, Alipoor M. A Comprehensive Study of Gamma-rays Shielding Features of Binary Compounds. Prog Physi Appl Mater. 2024; 4(1): 59-67. https://doi.org/10.22075/ppam.2024.32949.1082
  13. Elmahroug Y, Tellili B, Souga C, Manai K. ParShield: A computer program for calculating attenuation parameters of the gamma rays and the fast neutrons. Ann Nucl Energy 2015; 76: 94–9. https://doi.org/ 10.1016/j.anucene.2014.09.044
  14. Sadeq, Bashter II, Salem SM, Mansour SF, Saudi HA, Sayyed MI, et al. Enhancing the gamma-ray attenuation parameters of mixed bismuth/barium borosilicate glasses: Using an experimental method, Geant4 code and XCOM software. Prog Nuclear Energy 2022; 145: 104124. https://doi.org/10.1016/j. pnucene.2022.104124
  15. Abbasova N, Yüksel Z, Abbasov E, Gülbiçim H, Tufan MÇ. Investigation of gamma-ray attenuation parameters of some materials used in dental applications. Results in Phys. 2019; 12: 2202–5. https://doi.org/10.1016/j.rinp.2019.02.068
  16. Alsayed Z, Badawi MS, Awad R, Thabet AA, El-Khatib AM. Study of some γ-ray attenuation parameters for new shielding materials composed of nano ZnO blended with high density polyethylene. Nucl Technol Radiat Prot. 2019; 34(4): 342–52. https://doi.org/10.2298/ntrp190718033a
  17. Baiocco G, Bocchini L, Giraudo M, Barbieri S, Narici L, Lobascio C, et al. Innovative solutions for personal radiation shielding in space. Radiat Prot Dosimetry2018; 183(1–2): 228–32. https://doi.org/10. 1093/rpd/ncy216
  18. Ahern M, McEntee MF, Moore N. Radiographers’ attitudes toward the use of lead contact shielding. J Med Radiat Sci. 2023; 54(3): 415–20. https://doi.org/ 10.1016/j.jmir.2023.07.006
  19. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration. Radiat Environ Biophys 2020; 59(4): 583–600. https://doi.org/10. 1007/s00411-020-00865-8
  20. Burahmah N, Heilbronn L. Dose measurements at Provision Proton Therapy Center. Health Phys. 2024; 126(4): 252–8. https://doi.org/10.1097/hp. 0000000000001796
  21. Zensen S, Bos D, Opitz M, Forsting M, Guberina N, Deuschl C, et al. Single- and Dual-Source CT myelography: comparison of radiation exposure and establishment of diagnostic reference levels. Diagnostics 2021; 11(10): 1809. https://doi.org/10. 3390/diagnostics11101809
  22. Akuwudike P, López-Riego M, Marczyk M, Kocibalova Z, Brückner F, Polańska J, et al. Short- and long-term effects of radiation exposure at low dose and low dose rate in normal human VH10 fibroblasts. Front Public Health 2023; 11: 1297942. https://doi.org/10.3389/fpubh.2023.1297942
  23. Lubczak R, Duliban J. Derivatives of phenylene-1,2-diamine as modifiers for unsaturated polyester resins. Acta Chim Slov. 2020; 67(1): 221–34. https://doi.org/ 10.17344/acsi.2019.5374
  24. Yılmaz M, Akman F. Gamma radiation shielding properties for polymer composites reinforced with bismuth tungstate in different proportions. Appl Radiat Isot. 2023; 200: 110994. https://doi.org/10. 1016/j.apradiso.2023.110994
  25. Mehnati P, Malekzadeh R, Sooteh MY. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol. 2019; 12(1): 6–25. https://doi.org/10.1007/s12194-019-00500-2
  26. Mahalingam S, Kwon DS, Kang SG, Kim J. Multicomponent X-ray shielding using sulfated cerium oxide and bismuth halide composites. Mol. 2023; 28(16): 6045. https://doi.org/10.3390/ molecules28166045
  27. Akman F, Kaçal, Almousa N, Sayyed MI, Polat H. Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 Prog Nuclear Energy 2020; 121: 103257. https://doi.org/10.1016/j.pnucene.2020.103257
  28. Elsafi Mohamed, Almuqrin AH, Almutairi HM, Al-Saleh WM, Sayyed MI. Grafting red clay with Bi2O3 nanoparticles into epoxy resin for gamma-ray shielding applications. Sci Rep. 2023; 13(1): 5472. https://doi.org/10.1038/s41598-023-32522-7
  29. Almuqrin AH, Sayyed MI, Khandaker MU, Elsafi M. Exploring the impact of Bi2O3 particle size on the efficacy of dimethylpolysiloxane for medical gamma/X-rays shielding applications. Radiat Phys Chem. 2024; 220: 111629. https://doi.org/10.1016/j. radphyschem.2024.111629
  30. Pączkowski P, Puszka A, Gawdzik B. Investigation of degradation of composites based on unsaturated polyester resin and vinyl ester resin. Mater. 2022; 15(4): 1286. https://doi.org/10.3390/ma15041286
  31. Hashemi R, Tajik M, Asadi-Amirabadi E. Design and manufacture of composite flexible shield for neutron-gamma mixed fields. J Radiat Saf Meas. 2019; 8: 25-34. https://doi.org/10.22052/7.2.25
  32. Zhou L, Zhu X, Shen P, Huang C, Guo S, Zhou W, Gao Y. Constructing multilayered WB2/Bi/poly(ethylene-co-1-octene) composites with excellent nuclear radiation shielding efficiency and radiation damage prevention. J Chem Eng. 2023; 464: 142625. https://doi.org/10. 1016/j.cej.2023.142625
  33. Apte K, Bhide S. Basics of radiation. In: Elsevier eBooks [Internet]. 2024. p. 1–23. .https://doi.org/10. 1016/b978-0-323-95387-0.00013-3
  34. Alipoor M, Eshghi M. Ionizing radiation shielding properties of ceramic fibers using Monte Carlo simulation. Jicers 2023; 18(4) :48-56 (In Persian). http://jicers.ir/article-1-463-fa.html
  35. Arce P, Bolst D, Bordage M, Brown JMC, Cirrone P, Cortés‐Giraldo MA, Wright DH. Report on G4‐Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group. Med Phys. 2020; 48(1): 19–56. https://doi.org/10.1002/mp.14226
  36. Alipoor M, Eshghi M. Monte Carlo simulation and determination of gamma ray protection characteristics of composites containing Bismuth Oxide and elements of Gadolinium, Titanium, Tungsten, Zirconium, Zinc and Yttrium. J Sci Technol Compos. 2024; 10(4): 2348-2356 (In Persian). https://doi.org/10.22068/jstc. 2024.2007267.1845

 

 

 

 

 

 

ارتقاء امنیت وب با وف ایرانی