Introduction and Objectives: Nowadays, the use of ionizing radiation for the treatment of cancerous tumors is becoming increasingly sophisticated and evolving. In this study, the effect of silver nanoparticles on the dose buildup factor in PAGAS polymer gel—as a medium for holding silver nanoparticles—was investigated to evaluate their impact on radiotherapy and to develop suitable shielding materials that are lightweight, non-toxic, and flexible. Materials and Methods: The gamma ray source is a cesium source. Silver nanoparticles are in solution at a concentration of 1000 ppm. The dose buildup factor is measured by a NaI(TL) detector. Results: To investigate the effect of silver nanoparticles on the dose buildup factor, silver nanoparticles from a concentration of 0 to 8 mM were used in two samples of polymer gel, one at a height of 1 cm and the other at a height of 3 cm. From a concentration of 0 to 2 mM of silver nanoparticles, the dose buildup factor has an increasing trend, reaching a maximum value of 1.092 and 1.119 in samples with a height of 1 and 3 cm, respectively, and from a concentration of 2 to 8 mM of silver nanoparticles, the dose buildup factor has a decreasing trend. reaching a minimum value of 1.010 and 1.091 In samples with a height of 1 and 3 cm, respectively. Conclusion: The presence of silver nanoparticles in the polymer gel increases the interaction of the rays, which in cancerous tissue leads to further destruction of the cancerous tissue and in the shield causes further attenuation of the rays.
Hasani H, Nedayi H, Zahmatkesh M, Vardi M, Bagheri S, Mirzaei S. Dosimetric Evaluation of Linac Photon Small Fields using MAGIC Polymer Gels. Iran J Med Phys. 2011;8(3):31-39 (In Persian). https://doi.org/10.22038/ijmp.2011.7227
Magugliani G, Marranconi M, Liosi GM, Locatelli F, Gambirasio A, Trombetta L, et al. Pilot scale validation campaign of gel dosimetry for pre-treatment quality assurance in stereotactic radiotherapy. Physica Medica. 2023;114:103158. https://doi.org/10.1016/j.ejmp.2023.103158
Guadarrama-Huerta PJ, Arzaga-Barajas E, Rodríguez-Laguna A, Jim´enez-Acosta JA, Poitevin-Chac´on MA, Massillon-Jl G. Patient-specific quality assurance in SBRT treatments using 3D polymer gel dosimetry. Radiat Meas. 2024;175:107166. https://doi.org/10.1016/j.radmeas.2024.107166
Javaheri N, Yarahmadi M, Refaei A, Aghamohammadi A. Improvement of sensitivity of X-ray CT reading method for polymer gel in radiation therapy. Rep Pract Oncol Radiother. 2020;25:100-103. https://doi.org/10.1016/j.rpor.2019.12.017
Rabaeh KA, Hammoudeh IME, Eyadeh MM. Novel polymer gel dosimeters based on N-Vinylcaprolactam for medical dosimetry. J Radioanal Nucl Chem. 2022; 331:3147-3153. https://doi.org/10.1007/s 10967-022-08361-7
Eyadeh MM, Samadi SA, Rabaeh KA, Oglat AA, Diamond KR. Effect of lithium chloride inorganic salt on the performance of N‑(Hydroxymethyl)acrylamide polymer‑gel dosimeter in radiation therapy. J Radioanal Nucl Chem. 2021;330: 1255-1261. https://doi.org/10.1007/s10967-021-08036-9
Kawamura H, Sakae T, Terunuma T, Ishida M, Shibata Y, Matsumura A. Evaluation of three-dimensional polymer gel dosimetry using X-ray CT and R2 MRI. Appl Radiat Isot. 2013;77:94–102. https://doi.org/10.1016/j.apradiso.2013.02.011
Kozicki M, Jaszczak-Kuligowska M, Maras P. Measurement of ionising radiation dose absorbed by bones by using a bone-imitating polymer gel dosimeter. Meas. 2025;240:115633. https://doi.org/10.1016/j.measurement.2024.115633
Zhanga T, Almajidi YQ, Awad SA, Rahi Alhachamid F, Abdulfadhil Gateae M, Kadhum WR. Dosimetric properties of PASSAG polymer gel dosimeter in electron beam radiotherapy using magnetic resonance imaging. J Xray Sci Technol. 2023;31:825-836. https://doi.org/10.3233/XST-230073
Eyadeh MM, Alshomali L, Rabaeh KA, Oglat AA, Diamond KR. Improvement on the performance N‑(3‑methoxypropyl)acrylamide polymer‑gel dosimeter by the addition of inorganic salt for application in radiotherapy dosimetry. J Radioanal Nucl Chem. 2022;331:1343-1351. https://doi.org/10.1007/s10967-022-08197-1
Khosravi H, Bouraghi H. Evaluation of gold nanoparticles radio sensitization effect in radiation therapy of cancer: review article. Tehran Univ Med J (TUMJ). 2019;76(12):772-777 (In Persian).
Dezhangah M, Ghojavand M, Poursalehi R, Qolipour payvandi R. Study gamma radiation protection properties of silicon rubber-bismuth oxide nanocomposites: Synthesis, characterization and simulation. J Radiat Saf Meas. 2016;4(4):37-46 (In Persian). https://doi.org/ 10.22052/4.4.37
Ornov D, emnick J, Sp v ek V, Kon ek O. Polymer gel dosimetry using computed tomography. Nucl Instrum Methods Phys Res A or NIM A. 2011;652:806-809. https://doi.org/10.1016/j.nima.2010.09.089
Mather LM. Application of ultrasound to polymer gel dosimeters used in radiotherapy [thesis]. Brisbane (Australia): Queensland University of Technology; 2003.
Maryanski MJ, Gore JC, Kennan RP, Schulz RJ. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI. J Magn Reson Imaging 1993;11:253-258. https://doi.org/10.1016/0730-725X(93)90030-H
Sellakumar P, Jebaseelan J, Samuel E. Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-Ray CT. Radiat Meas. 2010;45:92-97. https://doi.org/10.1016/j.radmeas.2009.11.003
Yuan-Jen C, Jing-Quan L, Bor-Tsung H, Chun-Hsu Y, Chin-Hsing C. Dose evaluation of an NIPAM polymer gel dosimeter using gamma index. Radiat Phys Chem. 2014;104:180-187. https://doi.org/10.1016/j.radphyschem.2013.11.031
Oldham M, Siewerdsen JH, Shetty A, Jaffray DA. High resolution gel-dosimetry by optical-Ct and MR scanning. Med Phys. 2001;28(7):1436-1445. https://doi.org/10.1118/1.1380430
Chac n D, Vedelago J, Strumia MC, Valente M, Mattea F. Raman spectroscopy as a tool to evaluate oxygen effects on the response of polymer gel dosimetry. Appl Radiat Isot. 2019;150:43-52. https://doi.org/10.1016/j.apradiso.2019.05.006
Baldock C, Rintoul L, Keevil SF, Pope JM, George GA. Fourier transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry. Med Phys. 1998;43: 3617-3627. https://doi.org/10.1088/0031-9155/43/12/017
Natanasabapathi G, Warmington L, Watanabe Y. Evaluation of two calibration methods for MRI-based polymer gel dosimetry. Appl Radiat Isot. 2021;174: 109754. https://doi.org/10.1016/j.apradiso.2021.109754
Adliene D, Gabrielis Urbonavicius B, Laurikaitiene J, Puiso J. New application of polymer gels in medical radiation dosimetry: plasmonic sensors. Radiat Phys Chem. 2020;168:108609. https://doi.org/10.1016/j.radphyschem.2019.108609
Mahmoodi A, Tavakoli-Anbaran H. Measurement of absorbed dose in normoxic polymer gel and study of gold nanoparticles configuration effects. J Radiat Saf Meas. 2019;7(2):35-42 (In Persian). https://doi.org/10.22052/7.2.35
Jarrah I, Radaideh MI, Kozlowski T, Uddin R. Determination and validation of photon energy absorption buildup factor in human tissues using monte carlo simulation. Radiat Phys Chem. 2019;160: 15-25. https://doi.org/10.1016/j.radphyschem.2019.03.008
Singh S, Kumar A, Singh C, Singh Thind K, Mudahar GS. Effect of finite sample dimensioms and total scatter acceptance angle on the gamma ray buildup factor. Ann Nucl Energy 2008;35:2414-2416. https://doi.org/10.1016/j.anucene.2008.08.008
Ekinci N, Kavaz E, zdem r Y. A study of The energy absorption and exposure buildup factors of some anti-inflammatory drugs. Appl Radiat Isot. 2014;90:265-273. https://doi.org/10.1016/j.apradiso.2014.05.003
Kavaz E, Ahmadishadbad N, Photon buildup factors of some chemotherapy drugs. Biomed Pharmacother. 2015;69:34-41. https://doi.org/10.1016/j.biopha.2014.10.031
Kilicoglu O, Tekin HO. Bioactive glasses with additive: Behavior characterization against nuclear radiation and determination of buildup factors. Ceram Int. 2020;46:10779-10787. https://doi.org/10.1016/j.ceramint.2020.01.088
Sayyed MI, Elhouichet H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat Phys Chem. 2017;130: 335-342. https://doi.org/10.1016/j.radphyschem.2016.09.019
Obaid SS, Sayyed MI, Gaikwad DK, Pawar PP. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat Phys Chem. 2018;148:86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
Mahmoud KA, El-Agwany FI, Rammah YS, Tashlykov OL. Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study. J Non-Cryst Solids. 2020;541:120110. https://doi.org/10.1016/j.jnoncrysol.2020.120110
Alda'ajeh MM, Sharaf JM, Saleh HH, Hamideen MS. Determination of buildup factors for some human tissues using both MCNP5 and Phy-X/PSD. Nucl Eng Technol. 2023;55:4426-4430. https://doi.org/10.1016/j.net.2023.08.025
Sabry N, Zahran HY, Yousef EIS, Algarni H, Umar A, Albargi HB, et al. Gamma-ray attenuation, fast neutron removal cross-section and build up factor of Cu2MnGe[S,Se,Te]4 semiconductor compounds: Novel Radiat Phys Chem. 2021;179:109248. https://doi.org/10.1016/j.radphyschem.2020.109248
Kulwinder Singh M. Measurement of exposure buildup factors: The influence of scattered photons on gamma-ray attenuation coefficients. Nucl Instrum Methods Phys Res A or NIM A 2018;877:1-8. https://doi.org/10.1016/j.nima.2017.08.047
Pathak V. To study buildup factor in concrete. Neuroquantology 2022;20:4217-4226. https://doi.org/10.48047/NQ.2022.20.7.NQ33513
Knoll GF. Radiation detection and measurement. 4th ed. Hoboken (NJ): John Wiley & Sons; 2010.
Kaur S, Karol V, Kumar P, Kaur G, Sharma P, Saroa A, et al. Energy build-up factors estimation for BaZr0.10Ti0.90O3, Ba0.90La0.10TiO3 and Ba0.90La0.10Zr0.10Ti0.90O3 ceramics in shielding applications. Nucl Eng Technol. 2024;56:1822-1829. https://doi.org/10.1016/j.net.2023.12.039
Singh PS, Singh PT, Kaur P. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Ann Nucl Energy 2008;35:1093-1097. https://doi.org/10.1016/j.anucene.2007.10.007
Alavian H, Tavakoli-Anbaran. Study on effect of detector type in estimating buildup factor of gamma-rays by monte carlo simulation based on variance reduction. J Radiat Saf Meas. 2018;6(4):65-79 (In Persian). https://doi.org/10.22052/6.4.65
Tsoulfanidis N, Landsberger S. Measurement and detection of radiation. 3rd ed. Boca Raton (FL): Taylor & Francis; 2010.
De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, et al. A basic study of some normoxic polymer gel dosimeters. Phys Med Biol. 2002; 47: 3441–3463. https://doi.org/10.1088/0031-9155/47/19/301
Venning AJ, Brindha S, Hill B, Baldock C. Preliminary study of a normoxic PAG gel dosimeter with tetrakis (hydroxymethyl) phosphonium chloride as an anti-oxidant. J Phys: Conf Ser. 2004;3:155–158. https://doi.org/10.1088/1742-6596/3/1/016
Vahedian Movahed, A. and Tavakoli-Anbaran, H. (2025). Measurement of the Dose Buildup Factor of Cesium Source Gamma Rays in Polymer Gel Containing Silver Nanoparticles in Different Concentrations. Journal of Advanced Materials in Engineering, 44(4), 93-108. doi: 10.47176/jame.44.4.1082
MLA
Vahedian Movahed, A. , and Tavakoli-Anbaran, H. . "Measurement of the Dose Buildup Factor of Cesium Source Gamma Rays in Polymer Gel Containing Silver Nanoparticles in Different Concentrations", Journal of Advanced Materials in Engineering, 44, 4, 2025, 93-108. doi: 10.47176/jame.44.4.1082
HARVARD
Vahedian Movahed, A., Tavakoli-Anbaran, H. (2025). 'Measurement of the Dose Buildup Factor of Cesium Source Gamma Rays in Polymer Gel Containing Silver Nanoparticles in Different Concentrations', Journal of Advanced Materials in Engineering, 44(4), pp. 93-108. doi: 10.47176/jame.44.4.1082
CHICAGO
A. Vahedian Movahed and H. Tavakoli-Anbaran, "Measurement of the Dose Buildup Factor of Cesium Source Gamma Rays in Polymer Gel Containing Silver Nanoparticles in Different Concentrations," Journal of Advanced Materials in Engineering, 44 4 (2025): 93-108, doi: 10.47176/jame.44.4.1082
VANCOUVER
Vahedian Movahed, A., Tavakoli-Anbaran, H. Measurement of the Dose Buildup Factor of Cesium Source Gamma Rays in Polymer Gel Containing Silver Nanoparticles in Different Concentrations. Journal of Advanced Materials in Engineering, 2025; 44(4): 93-108. doi: 10.47176/jame.44.4.1082