Introduction and Objectives: A scintillator is a specialized material that converts high energy radiation, including X-rays or gamma rays, into UV or visible light. Calcium tungstate (CaWO4) represents one of the materials employed in scintillator applications. The principal emphasis of this investigation is directed towards the fabrication of CaWO4 powder and the influence of yttrium doping on its optical characteristics. Materials and Methods: In the present investigation, CaWO4 powder was synthesized using Ca(NO3)2.4H2O and Na2WO4.2H2O as precursors via the co-precipitation technique and then calcined at 600 ℃. YCl3.6H2O precursor was introduced as a dopant, serving as a source of Yttrium ions to enhance the properties of CaWO4. Y-doped CaWO4 powder was also synthesized through the co-precipitation method. The microstructural characteristics, optical properties, and scintillation performance of the synthesized samples were meticulously examined utilizing XRD, FESEM, UV-Vis spectroscopy, PL spectroscopy, and Alpha spectroscopy analyses. Results: XRD analysis substantiated the high purity of the synthesized powders, as well as the incorporation of Y ions into the CaWO4 crystal lattice. The morphological examination of the powders predominantly revealed a mainly spherical configuration, with dimensions measured at approximately 500-600 nm. The band gap energy, derived from the absorption spectrum, was determined to be 5.6eV for the pure CaWO4 and 5.8eV for the Y-doped CaWO4. Luminescence characterization of the samples indicated that their emission spectra fall within the range of 350-550 nm. Conclusion: The scintillation properties of the samples, as assessed through pulse height spectrum analysis, revealed that the Y-doped CaWO4 sample exhibited a significantly higher scintillation count rate intensity compared to its undoped counterpart.
Vuori S. Reversible photochromism of synthetic hackmanites in radiation detection and quantification [PhD thesis]. Finland: University of Turku; 2023.
Papadopoulos L. Rise time of scintillation emission in inorganic and organic scintillators. NIM A. 1997;401(2):322-328. https://doi.org/10.1016/S0168-9002(97)82050-5
Moseley ODI, Doherty TAS, Parmee R, Anaya M, Stranks SD. Halide perovskites scintillators: unique promise and current limitations. J Mater Chem C 2021;9(35):11588-11604. https://doi.org/10.1039/D1TC01595H
Knoll Glenn F. Radiation detection and measurement. 4th ed. New York: Wiley; 2010.
Crookes W. The emanations of radium. Proc R Soc Lond. 1903;71(467–476):405-408. http://doi.org/10.1098/rspl.1902.0116
Dorenbos P. The quest for high resolution γ-ray scintillators. Opt Mater: X 2019;1:100021. https://doi.org/10.1016/j.omx.2019.100021
Soleymani F. Analysis of microstructural changes, morphology and optical properties of the surface of copper oxide thin layers due to annealing for use in optoelectronic devices. J Adv Mater Eng. 2024;43(2): 17-28. https://doi.org/10.47176/jame.43.2.1062
Kuzmin A, Purans J. Local atomic and electronic structure of tungsten ions in AWO4 crystals of scheelite and wolframite types. Radiat Meas. 2001;33(5):583-586. https://doi.org/10.1016/S1350-4487(01)00063-4
Zhang Z, Wang W, Jiang D, Xu J. Synthesis of dumbbell-like Bi2WO6@CaWO4 composite photocatalyst and application in water treatment. Appl Surf Sci. 2014; 292:948-953. https://doi.org/10.1016/j.apsusc.2013.12.084
Phuruangrat A, Thongtem T, Thongtem S. Synthesis, characterisation and photoluminescence of nanocrystalline calcium tungstate. J Exp Nanosci. 2010;5(3):263-270. http://dx.doi.org/10.1080/17458080903513276
Fiserova L, Janda J. Scintillation powders for the detection of neutrons. IEEE Trans Nucl Sci. 2018; 65(8):2140-2146. http://doi:10.1109/TNS.2018.2818299
Sahi SK. Synthesis and characterization of nanocomposite scintillators for radiation detection. [PhD thesis]. Texas: University of Texas at Arlington; 2016.
Nishigaki S, Yano S, Kato H, Hirai T, Nonomura T. BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. J Am Ceram Soc. 1988;71(1):11‐17. https://doi.org/10.1111/j.1151-2916.1988.tb05769.x
Woo Seok C, Yoshimura M. Masahiro MY. Hydrothermal, hydrothermal-electrochemical and electrochemical synthesis of highly crystallized barium tungstate films. Jpn J Appl Phys. 1997; 36(3R):1216. https://doi.org/10.1143/jjap.36.1216
Esaka T. Ionic conduction in substituted scheelite-type oxides. Solid State Ion. 2000;136-137:1-9. http://dx.doi.org/10.1016/S0167-2738(00)00377-5
Breedon M, Spizzirri P, Taylor M, Plessis J, McCulloch D, Zhu J, et al. Synthesis of nanostructured tungsten oxide thin films: a simple, controllable, inexpensive, aqueous sol−gel method. CG & Design 2010;10(1):430-439. https://doi.org/10.1021/cg9010295
Almeida MAP, Lima JRO, Filho PNL, Li MS, Longo E, Cavalcante LS. Effect of Zn2+ ions on the structure, morphology and optical properties of CaWO4 J Sol-Gel Sci Technol. 2014;72:648–654. https://doi.org/10.1007/s10971-014-3550-y
Neto NFA, Dias BP, Tranquilin RL, Longo E, Li M, Bomio MRD, et al. Synthesis and characterization of Ag+ and Zn2+ co-doped CaWO4 nanoparticles by a fast and facile sonochemical method. J Alloys Compd. 2020;823:153617. https://doi.org/10.1016/j.jallcom.2019.153617
Wu H, Niu P, Pei R, Zheng Y, Jin W, Li XM, et al. Tb3+ and Sm3+ co-doped CaWO4 white light phosphors for plant lamp synthesized via solid state method: phase, photoluminescence and electronic structure. J Lumin. 2021;236:118146. https://doi.org/10.1016/j.jlumin.2021.118146
Das P, Balhara A, Das D, Sudarshan K, Gupta SK, Samanta S, et al. Oxygen vacancy sensitized energy transfer and tunable emission in Li+ codoped CaWO4: Bi3+. J Mol Struct. 2025;1321:139988. https://doi.org/10.1016/j.molstruc.2024.139988
Zhou S, Meng Q. The optical temperature sensing performance of Bi3+, Sm3+ co-doped CaWO4 Ceram Int. 2024;50(18):33647-33655. https://doi.org/10.1016/j.ceramint.2024.06.181
Paikaray R, Badapanda T, Mohapatra H, Richhariya T, Brahme N, Tripathy SN. Structural, photoluminescence, and thermoluminescence behaviors of samarium doped CaWO4 Mater Sci Eng B 2023;294:116511. https://doi.org/10.1016/j.mseb.2023.116511
Dhanushkodi S, Aslam M, Sasikumar S, Murugan J, Nadezhda K, Mikhailovich A, et al. Effect of surfactants on the luminescence, bonding, and catalytic properties of CaWO4 J Taiwan Inst Chem Eng. 2024;164:105660. https://doi.org/10.1016/j.jtice.2024.105660
Chen S-J, Li J, Chen X-T, Hong J-M, Xue Z, You X-Z. Solvothermal synthesis and characterization of crystalline CaWO4 J Cryst Growth. 2003;253(1):361-365. https://doi.org/10.1016/S0022-0248(03)01089-3
Yuan L, Yub J, Wangc S, Huanga K, Rena X, Sun Y, et al. UV–vis absorption shift of mixed valance state tungstate oxide: Ca72La0.28WO4. Mater Lett. 2015; 143:212-214. https://doi.org/10.1016/j.matlet.2014.12.115
Thongtem T, Kungwankunakorn S, Kuntalue B, Phuruangrat A, Thongtem S. Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature. J Alloys Compd. 2010;506:475-481. https://doi.org/10.1016/j.jallcom.2010.07.033
El Sayed ME, Naji S, Murshed MN, Samir A. Cation substitution for tunable electronic, optical and scintillation properties of Pb1-xCaxWO4 materials: A density functional theory study. Results Phys. 2021;30:104826. https://doi.org/10.1016/j.rinp.2021.104826
Iordanova R, Gancheva M, Koseva I, Tzvetkov P, Ivanov P. The influence of high-energy milling on the phase formation, structural, and photoluminescent properties of CaWO4 Materials 2024; 17(15):3724. https://doi.org/10.3390/ma17153724
Ferré T, Cavignac T, Jobic S, Latouche C. A computational study of CaWO4: raman spectrum, intrinsic defects, and excited state properties. Comput Mater Sci. 2023;228:112323. https://doi.org/10.1016/j.commatsci.2023.112323
Bakovets VV, Yushina IV, Antonova OV, Zolotova ES. Bandgap-width correction for luminophores CaMoO4 and CaWO4. Opti Spectrosc. 2017;123(3): 399-403. https://doi.org/10.1134/S0030400X17090053
Nobre FX, Muniz R, Do Nascimento ER, Amorim RS, Silva RS, Almeida A, et al. Hydrothermal temperature dependence of CaWO4 nanoparticles: structural, optical, morphology and photocatalytic activity. J Mater Sci: Mater Electron. 2021;32(8):9776-9794. https://doi.org/10.1007/s10854-021-07490-1
Dabre K, Dhoble SJ, Lochab J. Synthesis and luminescence properties of Ce3+ doped MWO4 (M=Ca, Sr and Ba) microcrystalline phosphors. J Lumin. 2014;149:348-352. https://doi.org/10.1016/j.jlumin.2014.01.048
Wu H, Hu Y, Kang F, Li N. Enhancement on afterglow properties of Eu3+ by Ti4+, Mg2+ incorporation in CaWO4 J Mater Res. 2012; 27(6):959-964. https://doi.org/10.1557/jmr.2012.16
Hosseinpour M, Abdoos H, Alamdari S, Menendez JL. Flexible nanocomposite scintillator detectors for medical applications: a review. Sensor Actuat A-Phys. 2024;378:115828. http://dx.doi.org/10.1016/j.sna.2024.115828
Irankhah, R. , Khakpour, N. and Mirzaee, O. (2025). Investigation of Optical and Scintillation Properties of Y-doped CaWO4. Journal of Advanced Materials in Engineering, 45(1), 109-122. doi: 10.47176/jame.45.1.1138
MLA
Irankhah, R. , , Khakpour, N. , and Mirzaee, O. . "Investigation of Optical and Scintillation Properties of Y-doped CaWO4", Journal of Advanced Materials in Engineering, 45, 1, 2025, 109-122. doi: 10.47176/jame.45.1.1138
HARVARD
Irankhah, R., Khakpour, N., Mirzaee, O. (2025). 'Investigation of Optical and Scintillation Properties of Y-doped CaWO4', Journal of Advanced Materials in Engineering, 45(1), pp. 109-122. doi: 10.47176/jame.45.1.1138
CHICAGO
R. Irankhah , N. Khakpour and O. Mirzaee, "Investigation of Optical and Scintillation Properties of Y-doped CaWO4," Journal of Advanced Materials in Engineering, 45 1 (2025): 109-122, doi: 10.47176/jame.45.1.1138
VANCOUVER
Irankhah, R., Khakpour, N., Mirzaee, O. Investigation of Optical and Scintillation Properties of Y-doped CaWO4. Journal of Advanced Materials in Engineering, 2025; 45(1): 109-122. doi: 10.47176/jame.45.1.1138