Introduction and Objective: The aim of this research is to investigate the effect of secondary tungsten powder reduction on the physical and mechanical properties of tungsten heavy alloys (WHAs) consolidated by the spark plasma sintering (SPS) method. Materials and Methods: Commercial tungsten powder was reduced at 900 °C for one hour in a hydrogen atmosphere. The type of tungsten oxide was investigated using SEM, EDS, Raman spectroscopy, and XRD analysis. The reduced tungsten powders were pre-sintered in a hydrogen atmosphere at 1150 °C for one hour and finally sintered at 1400 °C using the SPS method (30 MPa, 15 min). Results: The oxygen level of the commercial powder was successfully reduced from 3000 ppm to 770 ppm. SEM and EDS results revealed a uniform microstructure with minimal porosity and oxide dispersion. The hardness and compressive strength were measured to be 340 Vickers and 1611 MPa, respectively. Conclusion: This study confirms that secondary hydrogen reduction of commercial tungsten powder effectively decreases oxygen content and leads to a more homogeneous microstructure with reduced porosity and oxide dispersion. As a result, the spark plasma sintered WHAs exhibited improved hardness and compressive strength.
Song C, Zhang G, Chou K, Yan B. Preparation of ultrafine W powder via carbothermic prereduction of tungsten oxide followed by deep reduction with hydrogen. Int J Refract Hard Met. 2020;72(1):379-384. https://doi.org/10.1007/s11837-019-03749-5
Shveikin G, Kedin N. Products of carbothermal reduction of tungsten oxides in argon flow. Russ J Inorg Chem. 2014;59:153-158. https://doi.org/10.1134/S0036023614030206
Vidales H, Abanades S, Gonzalez M, Rubio H. Carbo-thermal and methano-thermal reduction of WO3 to metallic W for thermochemical production of solar fuels. Energy Technol. 2016;5(5):692-702. https://doi.org/1002/ente.201600455
Amiri Moghaddam A, Kalantar M. In-situ synthesis of WC-Co composite in WO3-Co3O4-C system by carbothermic reduction method. J Adv Mater Eng. 2022;36(1):121-130. (In Persian) https://doi.org/18869/acadpub.jame.36.1.121
Xu W, Chunfa L. Preparation and characterization of tungsten powder through molten salt electrolysis in a CaWO4–CaCl2–NaCl system. Int J Refract Hard Met. 2012;31:205-209. https://doi.org/10.1016/j.ijrmhm.2011.11.004
Tnag D, Xiao W, Yin H, Tian L, Wang D. Production of fine tungsten powder by electrolytic reduction of solid CaWO4 in molten salt. J Electrochem Soc. 2012; 159(6):139-143. https://doi.org/10.1149/2.113206jes
Wilken T, Morcom W, Wert C, Woodhouse J. Reduction of tungsten oxide to tungsten metal. Metall Mater Trans B. 1976;7:589-597. https://doi.org/10.1007/BF02698592
Kang H, Jeong Y, Oh S. Hydrogen Reduction behavior and microstructural characteristics of WO3 and WO3-NiO powders. Int J Refract Hard Met. 2019;80:69-72. https://doi.org/10.1016/j.ijrmhm.2018.12.013
Fouad N, Attyia K, Zaki M. Thermogravimetry of WO3 reduction in hydrogen: kinetic characterization of autocatalytic effects. Powder Technol. 1993;74(1): 31-37. https://doi.org/10.1016/0032-5910(93)80005-U
Millner T, Neugebauer J. Volatility of the oxides of tungsten and molybdenum in the presence of water vapour. Nature 1949;163:601-602. https://doi.org/10.1038/163601b0
Wu X, Luo J, Lu B, Xie C, Pi Z, Hu M, et al. Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature. Trans Nonferrous Met Soc China 2009;19(3):785-789. https://doi.org/10.1016/S1003-6326(10)60152-5
Al-Kelesh H, Abdel Halim K, Nasr M. Synthesis of heavy tungsten alloys via powder reduction technique. J Mater Res. 2016;31(19):2977-2986. https://doi.org/10.1557/jmr.2016.318
Wu C. Preparation of ultrafine tungsten powders by in-situ hydrogen reduction of nano-needle violet tungsten oxide. Int J Refract Hard Met. 2011;29(6):686-691. https://doi.org/10.1016/j.ijrmhm.2011.05.002
Sadeghi M, Rezaee S, Arman A, Tălu S, Luna C, Shakoury R. Study of the formation of tungsten powder by hydrogen reduction of ammonium paratungstate and stereometric analyses of the powder texture. Mater Res Express 2020;6(12):1265f7. https://doi.org/10.1088/2053-1591/ab6763
SchoderböckThe reduction of tungsten-VI-oxide to tungsten: A thermogravimetric microscale study with focus on the intermediates. Thermochim Acta 2022; 707(3):179113. https://doi.org/10.1016/j.tca.2021.179113
Ding L, Xiang D, Li Y, Li C, Li J. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int J Refract Hard Met. 2012;33:65-69. https://doi.org/10.1016/j.ijrmhm.2012.02.017
Churn K, Yoon D. Pore formation and its effect on mechanical properties in W-Ni-Fe heavy alloy. Powder Metal. 2013;22(4):175-178. https://doi.org/10.1179/pom.1979.22.4.175
Li X, Hu K, Qu S, Li L, Yang C. 93W-5.6Ni-1.4Fe heavy alloys with enhanced performance prepared by cyclic spark plasma sintering. Mater Sci Eng A Struct Mater. 2014;599:233-241. https://doi.org/10.1016/j.msea.2014.01.089
Zimmerl T, Schubert W, Bicherl A, Bock A. Hydrogen reduction of tungsten oxides: Alkali additions, their effect on the metal nucleation process and potassium bronzes under equilibrium conditions. Int J Refract Hard Met. 2017;62:87-96. https://doi.org/10.1016/j.ijrmhm.2016.06.015
Xi Z, Erdosy D, Garsia A, Duchense P, Li J, Muzzio M, et al. Pd nanoparticles coupled to WO72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 2017;17(4):2727-2731. https://doi.org/10.1021/acs.nanolett.7b00870
Ma Y, Lin C, Yeh C, Huang R. Synthesis and characterization of one-dimensional WO2 J Vac Sci Technol B Nanotechnol Microelectron. 2005;23:2141-2145. https://doi.org/10.1116/1.2050668
Hu K, Li X, Qu S, Li Y. Effect of heating rate on densification and grain growth during spark plasma sintering of 93W-5.6Ni-1.4Fe heavy alloys. Metall Mater Trans A Phys Metall Mater Sci. 2013;44(9): 4323-4336. https://doi.org/10.1007/s11661-013-1789-5
Shongwe M, Diouf S, Durowoju M, Olubambi P, Ramakokovhu M, Obadele B. A comparative of spark plasma sintering and hybrid spark plasma sintering of 93W-4.9Ni-2.1Fe heavy alloy. Int J Refract Hard Met. 2016;55:16-23. https://doi.org/10.1016/j.ijrmhm.2015.11.001
Kuncicka L, Kočich R, Klečková Z. Effect of sintering conditions on structures and properties of sintered tungsten heavy alloy. Materials 2020;13(10)2338. https://doi.org/10.3390/ma13102338
Abdallah A, Fayed A, Abdo G, Sallam M. Effect of cold isostatic pressing on the physical and mechanical properties of tungsten heavy alloys. J Eng Sci Military Technol. 2017;17(17):1-12. https://doi.org/21608/ejmtc.2017.21724
Abdallah A, Fayed A, Abdo G, Sallam M. Effect of processing parameters on the mechanical and structure properties of 93W-4.9Ni-2.1Fe tungsten heavy alloys. Int Conf Aerosp Sci Aviat Technol. 2013;15:1-19. https://doi.org/10.21608/asat.2013.22217
Rydosz A, Dyndal K, Kollbek K, Andrysiewicz W, Sitraz M, Marszalek K. Structure and optical properties of the WO3 thin films deposited by the GLAD magnetron sputtering technique. Vacuum 2020;177(4):109378. https://doi.org/10.1016/j.vacuum.2020.109378
Karagoz A, Craciun V, Basim G. Characterization of nano-scale protective oxide films: application on metal chemical mechanical planarization. ECS J Solid State Sci Technol. 2015;4(2):1-8. https://doi.org/10.1149/2.0151412jss
Gong X, Fan J, Ding F, Song M, Huang B, Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W-Ni-Fe alloys. Int J Refract Hard Met. 2012;30(1): 71-77. https://doi.org/10.1016/j.ijrmhm.2011.06.014
Mitkov M, Kaysser W. Influence of sintering and thermomechanical treatment on microstructure and properties of W-Ni-Fe alloys. In: Palmour H, Spriggs R, editors. Science of sintering. Boston: Springer; 1989. p. 243–54. https://doi.org/10.1007/978-1-4899-0933-6_21
Kaveh, M. H. , Borhani, G. H. and Bakhshi, S. R. (2026). Effect of Secondary Reduction of Tungsten Powder on the Properties of W-Ni-Fe Alloy Fabricated by Spark Plasma Sintering. Journal of Advanced Materials in Engineering, 45(2), 69-80. doi: 10.47176/jame.45.2.1143
MLA
Kaveh, M. H. , , Borhani, G. H. , and Bakhshi, S. R. . "Effect of Secondary Reduction of Tungsten Powder on the Properties of W-Ni-Fe Alloy Fabricated by Spark Plasma Sintering", Journal of Advanced Materials in Engineering, 45, 2, 2026, 69-80. doi: 10.47176/jame.45.2.1143
HARVARD
Kaveh, M. H., Borhani, G. H., Bakhshi, S. R. (2026). 'Effect of Secondary Reduction of Tungsten Powder on the Properties of W-Ni-Fe Alloy Fabricated by Spark Plasma Sintering', Journal of Advanced Materials in Engineering, 45(2), pp. 69-80. doi: 10.47176/jame.45.2.1143
CHICAGO
M. H. Kaveh , G. H. Borhani and S. R. Bakhshi, "Effect of Secondary Reduction of Tungsten Powder on the Properties of W-Ni-Fe Alloy Fabricated by Spark Plasma Sintering," Journal of Advanced Materials in Engineering, 45 2 (2026): 69-80, doi: 10.47176/jame.45.2.1143
VANCOUVER
Kaveh, M. H., Borhani, G. H., Bakhshi, S. R. Effect of Secondary Reduction of Tungsten Powder on the Properties of W-Ni-Fe Alloy Fabricated by Spark Plasma Sintering. Journal of Advanced Materials in Engineering, 2026; 45(2): 69-80. doi: 10.47176/jame.45.2.1143