بررسی اثر چگالی جریان بر ریزساختار لایه‌های نازک منگنز- مس تولید شده به روش رسوب‌دهی الکتریکی

نویسندگان

گروه مهندسی مواد و متالوژی، دانشگاه شهید باهنر کرمان

چکیده

- در این تحقیق پوشش نانو کریستالی M‏n-Cu با روش رسوب‌دهی الکتریکی از حمام حاوی سولفات آمونیوم بر زیر لایه فولاد زنگ‌نزن 304 AISI ایجاد شد. اثرات چگالی جریان رسوب‌دهی بر ریزساختار، ساختار بلوری و ترکیب شیمیایی پوشش‌ها بررسی گردید. نتایج نشان داد که در چگالی جریان‌های پایین، پوشش‌های غیر پیوسته با مقدار مس زیاد به دست می آید. با افزایش چگالی جریان، پوشش‌های غیربلوری، فشرده و غیریکنواخت با مقادیر کم مس ایجاد می شوند. حضور مقدار بسیار کم مس در لایه نازک رسوب یافته از تبدیل فاز نرم‌تر Mn-g به فاز شکننده Mn-a جلوگیری به عمل می آورد. با تغییر در چگالی جریان پوشش‌دهی، در اندازه دانه پوشش‌ها تغییر چندانی ایجاد نشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Current Density on Microstructure of Mn-Cu Thin Films produced by Electroplating Coating Technique

نویسندگان [English]

  • M. Haerifar
  • M. Zandrahimi
چکیده [English]

In the present study, 304 stainless steel (SS) was electrochemically plated with nanocrystalline Mn-Cu alloy coatings from a bath containing ammonium sulfate. The effects of current density on the microstructure, crystallographic structure, and chemical composition of the deposits were studied. The results showed that at low current densities, discontinuous coatings with a large amount of Cu can be obtained. Further increase in current density resulted in amorphous, compact and heterogeneous coatings with a small amount of Cu. The presence of Cu at low contents in precipitated coatings delayed the phase transformation of as-deposited ductile g-Mn to the brittle and hard a-Mn. However, the results did not show any specific changes in the grain size of the coatings with variation of current densities.

کلیدواژه‌ها [English]

  • Electroplated coating
  • Mn-Cu alloy
  • current density
  • microstructure
1. Zhang, K., Zhang, K., Li, H.X. and Chen, G.N., “Interface Fracture Behavior of Electroplated
Coating on Metal Substrate Under Compressive
Strain”, Materials Processes and Technology, Vol. 209, pp. 1337–1341, 2009. 2. Harutyunyan, V.S., Torossyan, A.R. and Aivazyan,
A.P., “Deformations, Subgrain Structure,
Dislocation Arrangement and Transition Layer
Formation in Cu/Al Coating Deposited by
Mechanochemical Technique”, Applied Surface
Science, Vol. 222, pp. 43–64, 2004. 3. Rashwan, S. M., “Study on the Behavior of Zn-Co-Cu
Alloy Electroplating”, Materials Chemistry and
Physics, Vol. 89, pp. 192–204, 2005. 4. Karpuz, A., Kockar, H., Alper, M., Karaagac, O. and
Haciismailoglu, M., “Electrodeposited Ni–Co Films
from Electrolytes with Different Co Contents”, Applied Surface Science, Vol. 258, pp. 4005– 4010, 2012. 5. Gong, J. and Zangari, G., “Increase Metallic Character
of Electrodeposited Mn Coatings Using Metal Ion
Addetives”, Electrochemical and Solid-State Letters, Vol. 7, pp. C91–C94, 2004. 6. Endres, F., MacFarlane, D. and Abbott, A., Electrodeposition from Ionic Liquids, John Wiley &
Sons, New York, 2008. 7. Srinivasan, K.N., Selvam, M. and Iyer, S.V.K., “Hydrogen Permeation During Zinc-Manganese
Alloy Plating”, Journal of Applied Electrochemistry, Vol. 23, pp. 358–363, 1993. 8. Ananth, M.V., “Corrosion Studies on Electrodeposited
Nickel-Manganese Coatings”, Transactions of the
Institution of Metal Finishing, Vol. 75, pp. 224–227, 1997. 9. Stephen, A., Ananth, M.V. and Ravichendran, V., “Corrosion Behavior of Electrodeposited Ni-Mn
Alloys–Electrochemical Impedance Measurements”, Anti-corrosion Methods and Materials, Vol. 46, pp. 117–121, 1999. 10. Gong, J. and Zangari, G., “Electrodeposition and
Characterization of Manganese Coatings”, Journal
of Electrochemical Society, Vol. 149, pp. C209– C217, 2002. 11. Gong, J., Wei, G., Barnard, J.A. and Zangari, G., “Electrodeposition and Characterization of
Sacrificial Copper-Manganese Alloy Coatings:
part. Structural, Mechanical and Corrosion- Resistance Properties”, Metallurgical and Materials
Transactions A, Vol. 36, pp. 2705–2715, 2005. 12. Mangolini, F., Magagnin, L. and Cavalloti, P.L., “Pulse Plating of Mn–Cu Alloys on Steel”, Journal
of the Electrochemical Society, Vol. 153, pp. C623– C628, 2006. 13. Vander Voort, G.F., Metallography and Microstructures, 1st ed., ASM Metals Handbook, USA, 2004. 14. Gyftou, P., Pavlatou, E. A. and Spyrellis, N., “Effect
of Pulse Electrodeposition Parameters on the
Properties of Ni/nano-SiC Composites”, Applied
Surface Science, Vol. 254, pp. 5910–5916, 2008. 15. Nam, D., Kim, R., Han, D., Kim, J. and Kwon, H., “Effects of (NH4)2SO4 and BTA on the
Nanostructure of Copper Foam Prepared by
Electrodeposition” Electrochimica Acta, Vol. 56, pp. 9397–9405, 2011.
16. Anderson, T.N., Dandapani, B.S. and Berry, J.M., “Hydrogen Evolution Studies in Neutral Media”, Journal of Electroanalytical Chemistry, Vol. 357, pp. 77–89, 1993. 17. Giannopoulou, I., Penias, D. and Paliaris, I.P., “Electrochemical Modeling and Study of Copper
Deposition from Concentrated Ammoniacal Sulfate
Solutions”, Hydrometallurgy, Vol. 99, pp. 58–66, 2009. 18. Reedijk, J. and Poeppelmeier, K., Comprehensive
Inorganic Chemistry II, 2nd ed., Elsevier Science, Amsterdam, 2013. 19. Huerta, D., Zhouping, A., Luo, P. and Heusler, K.E., “Electrochemical Behaviour of Chromium,
Molybdenum and Manganese in Liquid Ammonia”, Electrochimica Acta, Vol. 39, pp. 2795–2797, 1994. 20. Ananth, M.V., “Corrosion Studies on
Electrodeposited Nickel-Manganese Coatings”, Transactions of the Institution of Metal Finishing, Vol. 75, pp. 224–227, 1997. 21. Sriveeraraghavn, S., Krishnan, R.M., Natarajan, S.R.,
Parthasaradhy, N.V. and Udupa, H.V.K.,
“Immersion Stripping of Nickel Deposits”, Metal
Finishing, Vol. 77, pp. 57–63, 1979. 22. Gong, J. and Zangari, G., “Electrodeposition of
Sacrificial Tin-Manganese Alloy Coatings”, Materials Science and Engineering A, Vol. 344, pp. 268–278, 2003. 23. Lin, C.T. and Lung–Lin, K., “Effects of Current
Density and Deposition Time on Electrical
Resistivity of Electroplated Cu Layers”, Journal of
Materials Science, Vol. 15, pp. 757–762, 2004.
24. Bradley, P.E. and Landolt, D., “Surface Coverage
Model for Pulse-Plating of Binary Alloys Exhibiting
a Displacement Reaction”, Electrochimica Acta, Vol. 42, pp. 993–1003, 1997. 25. Obradovic, M.D., Stevanovic, R.M. and Despic,
A.R., “Electrochemical Deposition of Ni–W Alloys
from Ammonia-Citrate Electrolyte”, Journal of
Electroanalytical Chemistry, Vol. 552, pp. 185–193, 2003. 26. Issartel, C., Buscail, H., Caudron, E., Cueff, R., Riffard, F., Perrier, S., Jacquet, P. and Lambertin,
M., “Influence of Nitridation on the Oxidation of a
304 Steel at 800 C”, Corrosion Science, Vol. 46, pp. 2191–2201, 2004. 27. Pozio, A., Zaza, F., Masci, A. and Silva, R.F.,
“Bipolar Plate Materials for PEMFCs: A
Conductivity and Stability Study”, Journal of Power
Sources, Vol. 179, pp. 631–639, 2008. 28. Wahab, M.A., Solid State Physics: Structure and
Properties of Materials, 2nd ed., Narosa Publishing
House, New Delhi, 2005. 29. Bruce King, R., Inorganic Chemistry of Main Group
Elements, 2nd Ed., John Wiley Sons, New York,
1995. 30. Deng, H., “Electrochemical Deposition of Nanocrystalline
Copper and Copper-Based Composite Films”, M.Sc.
thesis, North Carolina State University, 2002. 31. Budevski, E., Staikov, G. and Lorenz, W.J., “Electrocrystallization: Nucleation and Growth
Phenomena”, Electrochimica Acta, Vol. 45, pp. 2559–2574, 2000.

تحت نظارت وف ایرانی