1. Kamyshny, A., and Magdassi, S., “Conductive Nanomaterials for Printed Electronics”, Small,
Vol. 10(17), pp. 3515-3535, 2014.
2. Wang, Y., and Wei, J., “Curing Process and Conductive Performance of UV Curable Conductive Inkjet Printing”, Journal of Functional Materials and Devices, Vol. 5, pp. 516-520, 2009.
3. Hrehorova, E., Rebros, M., Pekarovicova, A., Bazuin, B., Ranganathan, A., Garner, S., and Boudreau, R., “Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronic”, Journal of Display Technology,
Vol. 7(6), pp. 318-324, 2011.
4. Nagata, Y., Watananabe, Y., Fujita, S.I., Dohmaru, T., and Taniguchi, S., “Formation of Colloidal Silver in Water by Ultrasonic Irradiation”, Journal of Chemical Society, Chemistry Communication,
Vol. 21, pp. 1620-1622, 1992.
5. El-Nour, K.M.A., Eftaiha, A.A., Al-Warthan, A., and Ammar, R.A., “Synthesis and Applications of Silver Nanoparticles”, Arabian Journal of Chemistry,
Vol. 3(3), pp. 135-140, 2010.
6. Amendola, V., Polizzi, S., and Meneghetti, M., “Free Silver Nanoparticles Synthesized by Laser
Ablation in Organic Solvents and their Easy Functionalization”, Langmuir, Vol. 23(12), pp. 6766-6770, 2007.
7. Tolaymat, T.M., El Badawy, A.M., Genaidy, A., Scheckel, K.G., Luxton, T. P., and Suidan, M., “An Evidence-Based Environmental Perspective of Manufactured Silver Nanoparticle in Syntheses and Applications: A Systematic Review and Critical Appraisal of Peer-Reviewed Scientific Papers”, Science of the Total Environment, Vol. 408(5),
pp. 999-1006, 2010.
8. Lu, Y.C., and Chou, K.S., “A Simple and Effective Route for the Synthesis of Nano-Silver Colloidal Dispersions”, Journal of the Chinese Institute of Chemical Engineers, Vol. 39(6), pp. 673-678, 2008.
9. Wang, H., Qiao, X., Chen, J., and Ding, S., “Preparation of Silver Nanoparticles by Chemical Reduction Method”, Colloids and Surfaces A: Physicochemical and Engineering Aspects,
Vol. 256(2), pp. 111-115, 2005.
10. Shin, H.S., Yang, H.J., Kim, S.B., and Lee, M.S., “Mechanism of Growth of Colloidal Silver Nanoparticles Stabilized by Polyvinyl Pyrrolidone in γ-Irradiated Silver Nitrate Solution” Journal of Colloid and Interface Science, Vol. 274(1), pp. 89-94, 2004.
11. Chou, K.S., and Lai, Y.S., “Effect of Polyvinyl Pyrrolidone Molecular Weights on the Formation of Nanosized Silver Colloids”, Materials Chemistry and Physics, Vol. 83(1), pp. 82-88, 2004.
12. Wang, H., Qiao, X., Chen, J., Wang, X., and Ding, S., “Mechanisms of PVP in the Preparation of Silver Nanoparticles”, Materials Chemistry and Physics, Vol. 94(2), pp. 449-453, 2005.
13. Rai, A., Singh, A., Ahmad, A., and Sastry, M., “Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles”, Langmuir, Vol. 22(2), pp. 736-741,2006.
14. Ross, P.J., Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, 2nd ed., p. 213, McGraw-Hill, New York, 1988.