تأثیر افزودن نانومنیزیا بر خواص آجرهای دیرگداز منیزیت- هرسنیتی ساخته شده با استفاده از لجن کنورتور

نویسندگان

دانشکده فنی و مهندسی، دانشگاه شهرکرد

چکیده

در پژوهش حاضر، از مخلوط اسپینل آلومینات منیزیم و لجن کنورتور به‌عنوان مواد اولیه جهت تشکیل درجای فاز هرسنیت در ساخت آجر دیرگداز منیزیت- هرسنیتی استفاده شد. نمونه‌های پرس شده در دو دمای 1400 و 1500 درجه سانتی‌گراد سنتز شد و سپس ترکیب فازی آجرهای سنتز شده در 1400 درجه سانتی‌گراد مورد بررسی قرار گرفت. همچنین اثر افزودن درصدهای مختلف نانوذرات منیزیا روی خواص آجرهای دیرگداز منیزیا- هرسنیتی مورد بررسی قرار گرفت. در این ارتباط خواص فیزیکی، استحکام فشاری سرد، مقاومت به شوک حرارتی و ریزساختار آجرهای دیرگداز مورد ارزیابی قرار گرفت. نتایج آنالیز فازی نشان داد که فاز هرسنیت در زمینه دیرگداز تشکیل و باعث برقراری اتصال و افزایش آن بین ذرات منیزیا می‌شود. با ارزیابی خواص مشخص شد که افزودن نانوذرات منیزیا به‌دلیل افزایش تراکم ساختار باعث کاهش تخلخل‌ می‌شود که در این ارتباط میزان بهینه نانوذرات منیزیا یک درصد وزنی تعیین شد. افزودن مقادیر بیشتر نانوذرات منیزیا به‌دلیل پدیده تجمع و بهم چسبیدن ذرات باعث افزایش تخلخل‌ می‌شود. سطح ویژه بالای نانوذرات منیزیای افزوده شده موجب انجام سینترینگ مناسب در 1400 درجه سانتی‌گراد، افزایش اتصالات بین ذرات و در نتیجه افزایش استحکام مکانیکی می‌شود اما تأثیری بر مقاومت به شوک حرارتی آجر دیرگداز ندارد. بررسی‌های ریزساختاری نیز کاهش تخلخل‌ و افزایش اتصالات بین ذرات را با افزودن مقدار بهینه نانوذرات منیزیا نشان داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Nano-magnesia Addition on the Properties of Magnesite-hercynite Refractory Bricks Made with the Use of Convertor Mud

نویسندگان [English]

  • H. Ahmadi
  • S. Otroj
  • M. R. Nilforushan
  • A. Dehghani Varnamkhasti
Faculty of Engineering and Technology, Shahrekord University, Shahrekord, Iran
چکیده [English]

In this study, the composition of magnesium aluminate spinle and the converter mud were used as raw materials to in-situ formation of hercynite phase in magnesite-hercynite refractory bricks. The pressed samples were sintered at 1400 and 1500℃ and then, the phase composition of bricks was evaluated after firing at 1400℃. Besides, the effect of nano-magnesia particles addition on the properties of magnesia-hercynite refractory bricks was examined. Hence, the physical peroperties, thermal shock resistance and microstructure of refractory bricks were evaluated. The phase composition results showed that hercynite is well-formed in the refractory matrix, which leads to bonding formation and its increase between magnesia particles. The evaluation of results indicated that the addition of nano-magnesia particles can reduce the porosity of brick via increasing particles packing. In this relation, 1 wt. % nano-magnesia addition was determined as optimum content. Further addition of nano-magnesia leads to increasing of porosity via agglomeration of particles. Due to the high surface area of used nano-magnesia particles, the adequate sintering of refractory brick containing nano-magnesia take places at 1400℃. This leads to increasing of particles bonding and then, increasing mechanical strength, but it can not affect the thermal shock resistance of refractory bricks. The microstructural evaluations showed the lower porosity and further particles bonding with addition of nano-magnesia optimum content.
 

کلیدواژه‌ها [English]

  • Hercynite
  • Converter Mud
  • Magnesite Refractory
  • Spinle
  • Nano Magnesia
2. Petkov, V., Jones, P. T., Boydens, E., Blanpain, B., and Wollants, P., “Chemical Corrosion Mechanisms of Magnesia-Chromite and Chrome-Free Refractory Bricks by Copper Metal and Anode Slag”, Journal of the European Ceramic Society, Vol. 27, pp. 2433-2444, 2007.
3. Tsuchinari, A., Osaki, H., Okamoto, H., and Yamamoto, T., Chrome-free brick, Harima Ceramic Co., Ltd, Sep 24, 1996.
4. اسلامی داشبلاغ، ح.، ولاشجردی، م.، سرپولکی، ح.، نقی‌زاده، ر. و باوندوندچالی، م.، "بررسی خواص و ویژگی‌های دیرگدازهای منیزیت اسپینل هرسینیتی"، مجموعه مقالات ششمین کنگره سرامیک ایران، تهران، ص. 1-5 1386.
5. Nievoll, J., Guo, Z., and Shi, S., “Performance of Magnesia Hercynite Bricks in Large Chinese Cement Rotary Kilns”, RHI Bulletin, Vol. 3, pp. 15-17, 2006.
6. Bin, Y., Huazhi, G., and Houzhi, W., “In-Situ Synthesis of Periclase-Hercynite Material: Sintering Process and Properties, Cultivation Base for State Key Laboratory of Refractories and High-temperature Ceramics”, Wuhan University of Science and Technology, Vol. 1, pp. 81-89, 2009.
7. Bin, Y., Huazhi, G., Houzhi, W., and Hai, Y., “Properties of Periclase-Hercynite Brick for Cement Kiln”, The State Key Laboratory Breeding Base of Refractories and Ceramics, 2002.
8. Alan Castilloa ,G., Contrerasa, J., Puente-Ornelasa, R., Aguilar-Martínezb, J. A., Garcíaa, L., and Gómez, C., “Hercynite and Magnesium Aluminate Spinels Acting as a Ceramic Bonding in an Electrofused MgO–CaZrO3 Refractory Brick for the Cement Industry”, Ceramics International, Vol. 38, pp. 6769-6775, 2012.
9. Contreras, J. E., CastilloT, G. A., Rodrı´guez, E. A., Das, T. K., and Guzman, A. M., “Microstructure and Properties of Hercynite – Magnesia – Calcium Zirconate Refractory Mixtures”, Materials Characterization, Vol. 54, pp. 354-359, 2005.
10. Buchebner, G., Molinari, T., and Harmuth, H., “Magnesia-Hercynite Bricks, an Innovative, Burnt Basic Refractory”, Unified International Technical Conference on Refractories (UNITECR’99), pp.201-3, 1999.
11. Chen, J., and Yu, L., “Synthesis of Hercynite by Reaction Sintering”, Journal of the European Ceramic Society, Vol. 31, pp. 259-263, 2010.
13. Sako, E. Y., Braulio, M. A. L., and Pandolfelli, V. C., “The Corrosion and Microstructure Relationship for Cement-Bonded Spinel Refractory Castables”, Ceramics International, Vol. 38, pp. 2177-2185, 2012.
14. Grasset-Bourdel, R., Alzina, A., Huger, M., Gruber, D., Harmuth, H., and Chotard, T., “Influence of Thermal Damage Occurrence at Microstructural Scale on the Thermomechanical Behaviour of Magnesia-Spinel Refractories”, Journal of the European Ceramic Society, Vol. 32, pp. 989-999, 2012.
15. Luz, A. P., Tomba Martinez, A. G., Braulio, M. A. L., Liebske, C., and Pandolfelli, V. C., “Basic Slag Attack of Spinel-Containing Refractory Castables”, Ceramics International, Vol. 37, pp. 1935-1945, 2011.
16. ASTM C1171-96, Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories, ASTM International, West Conshohocken, PA, 2003.

ارتقاء امنیت وب با وف ایرانی