خواص ساختاری و فیزیکی پوشش‌های نازک نانوکامپوزیتی دی‌اکسید تیتانیم: نانولوله کربنی سنتز شده به‌روش سل- ‌ژل غوطه‌وری به ‌منظور استفاده در سلول خورشیدی رنگ‌دانه‌ای

نویسندگان

دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران

چکیده

پوشش‌های نازک نانوکامپوزیتی TiO2/MWCNT حاوی درصدهای گوناگون از نانولوله‌های کربنی چنددیواره روی زیرلایه اکسید قلع دوپ شده با فلوئور به روش سل- ‌ژل غوطه‌وری ایجاد شدند. نتایج آزمون پراش‌سنجی پرتو ایکس حاکی از آن بودند که ساختار بلوری TiO2 در پوشش‌ها آناتاز است. ضمن اینکه مشخص شد افزایش مقدار CNT در پوشش باعث کاهش اندازه بلورک‌های TiO2 می‌شود اما تأثیری بر ساختار کریستالی و فاز بلوری آن ندارد. تصاویر میکروسکوپی الکترونی روبشی گسیل میدانی نشان دادند که CNTs به‌طور یکنواخت در بین نانوذرات تقریباً کروی TiO2 که اندازه‌ای در حدود 45 نانومتر دارند، پراکنده شده‌اند و تماس مطلوبی بین آنها وجود دارد. همچنین، این تصاویر مشخص کردند که با افزایش مقدار CNT میزان حضور ترک روی سطح پوشش زیاد می‌شود. نتایج آزمون طیف‌سنجی مرئی- فرابنفش بیانگر آن بودند که میزان جذب در محدوده نور مرئی با افزایش مقدار CNT در پوشش زیاد شده است و تغییر قابل ملاحظه‌ای در لبه جذب پوشش‌های کامپوزیتی در مقایسه با پوشش TiO2 خالص وجود ندارد. از طیف‌های فتولومینسانس مشخص شد که حضور CNT در پوشش TiO2 نرخ ترکیب مجدد جفت الکترون و الکترون- حفره‌ها را کم کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Structural and Physical Properties of TiO2/CNT Nanocomposite Thin Films Synthesized by Sol-Gel Dip Coating Method for Using in Dye-Sensitized Solar Cell

نویسندگان [English]

  • S. Daneshvar e Asl
  • S. K. Sadrnezhaad
Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.
چکیده [English]

TiO2/MWCNT nanocomposite thin films containing different percentages of multi-walled carbon nanotubes were coated on fluorinated tin oxide substrates by sol-gel dip coating method. Results of X-ray diffraction analysis indicated that the crystal structure of the coatings was anatase TiO2. It was also understood that the size of crystallites reduced with CNT but structural properties and equilibrium phase remain intact. Field emission scanning electron microscope images showed that CNTs dispersed uniformly among 45 nm spherical TiO2 particles of close relations. These images also showed that CNT promoted cracks on the coated surface. Results of the UV-Vis spectroscopy showed that the visible light range adsorption  increased with CNT and the absorption edge did not significantly differ with the pure TiO2 layers.. Results of the photoluminescence spectroscopy revealed that the presence of CNT could reduce the pair electron–electron holes recombination which is considered totally undesirable.
 

کلیدواژه‌ها [English]

  • nanocomposite
  • titanium dioxide
  • carbon nanotube
  • Sol-gel dip coating
  • Structural and physical properties
1. Jalali, M., Moakhar, R. S., Kushwaha, A., Goh, G. K. L., Sadrnezhaad, S. K., and Riahi-Noori, N., “TiO2 Surface Nanostructuring for Improved Dye Loading and Light Scattering in Double-Layered Screen-Printed Dye-Sensitized Solar Cells”, Journal of Applied Electrochemistry, Vol. 45, No. 8, pp. 831-838, 2015.
2. Jalali, M., Moakhar, R. S., Kushwaha, A., Goh, G. K. L., Riahi-Noori, N., and Sadrnezhaad, S. K., “Enhanced Dye Loading-Light Harvesting TiO2 Photoanode with Screen Printed Nanorod-Nanoparticles Assembly for Highly Efficient Solar Cell”, Electrochimica Acta, Vol. 169, pp. 395-401, 2015.
3. Jarernboon, W., Pimanpang, S., Maensiri, S., Swatsitang, E., and Amornkitbamrung, V., “Effects of Multiwall Carbon Nanotubes in Reducing Microcrack Formation on Electrophoretically Deposited TiO2 Film”, Journal of Alloys and Compounds, Vol. 476, No. 1, pp. 840-846, 2009.
4. Jiang, L. C., and Zhang, W. D., “Electrodeposition of TiO2 Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen Peroxide Sensing”, Electroanalysis, Vol. 21, No. 8, pp. 988-993, 2009.
5. Jiang, L. C., and Zhang, W. D., “Charge Transfer Properties and Photoelectrocatalytic Activity of TiO2/MWCNT Hybrid”, Electrochimica Acta, Vol. 56, No. 1, pp. 406-411, 2010.
6. Yao, Y., Li, G., Ciston, S., Lueptow, R. M., and Gray, K. A., “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity”, Environmental Science & Technology, Vol. 42, No. 13, pp. 4952-4957, 2008.
7. Li, J., Tang, S., Lu, L., and Zeng, H. C., “Preparation of Nanocomposites of Metals, Metal Oxides, and Carbon Nanotubes via Self-Assembly”, Journal of the American Chemical Society, Vol. 129, No. 30, pp. 9401-9409, 2007.
8. Kongkanand, A., Martínez Domínguez, R., and Kamat, P. V., “Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons”, Nano Letters, Vol. 7, No. 3, pp. 676-680, 2007.
9. Yan, X., Pan, D., Li, Z., Zhao, B., Zhang, J., and Wu, M., “Facile Synthesis of Solution-Disposable Carbon Nanotube-TiO2 Hybrids in Organic Media”, Materials Letters, Vol. 64, No. 15, pp. 1694-1697, 2010.
10. Sawatsuk, T., Chindaduang, A., Sae-Kung, C., Pratontep, S., and Tumcharern, G., “Dye-Sensitized Solar Cells Based on TiO2–MWCNTs Composite Electrodes: Performance Improvement and Their Mechanisms”, Diamond and Related Materials, Vol. 18, No. 2, pp. 524-527, 2009.
11. Yu, H., Quan, X., Chen, S., Zhao, H., and Zhang, Y., “TiO2-Carbon Nanotube Heterojunction Arrays with a Controllable Thickness of TiO2 Layer and Their First Application in Photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 200, No. 2, pp. 301-306, 2008.
12. Wang, H., Quan, X., Yu, H., and Chen, S., “Fabrication of a TiO2/Carbon Nanowall Heterojunction and Its Photocatalytic Ability”, Carbon, Vol. 46, No. 8, pp. 1126-1132, 2008.
13. Xu, Y. J., Zhuang, Y., and Fu, X., “New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange”, The Journal of Physical Chemistry C, Vol. 114, No. 6, pp. 2669-2676, 2010.
14. Li, L., Yang, M., Zhang, S., Liu, P., Li, G., Wen, W., Zhang, H., and Zhao, H., “The Fabrication of CNTs/TiO2 Photoanodes for Sensitive Determination of Organic Compounds”, Nanotechnology, Vol. 21, No. 48, p. 485503, 2010.
15. Carvalho, H. W., Batista, A. P., Hammer, P., and Ramalho, T. C., “Photocatalytic Degradation of Methylene Blue by TiO2-Cu Thin Films: Theoretical and Experimental Study”, Journal of Hazardous Materials, Vol. 184, No. 1, pp. 273-280, 2010.
16. Akpan, U. G., and Hameed, B. H., “The Advancements in Sol-Gel Method of Doped-TiO2 Photocatalysts”, Applied Catalysis A: General, Vol. 375, No. 1, pp. 1-11, 2010.
17. Wang, W., Serp, P., Kalck, P., and Faria, J. L., “Visible Light Photodegradation of Phenol on MWNT-TiO2 Composite Catalysts Prepared by a Modified Sol-Gel Method”, Journal of Molecular Catalysis A: Chemical, Vol. 235, No. 1, pp. 194-199, 2005.
18. Gao, B., Peng, C., Chen, G. Z., and Puma, G. L., “Photo-Electro-Catalysis Enhancement on Carbon Nanotubes/Titanium Dioxide (CNTs/TiO2) Composite Prepared by a Novel Surfactant Wrapping Sol-Gel Method”, Applied Catalysis B: Environmental, Vol. 85, No. 1, pp. 17-23, 2008.
19. Garzella, C., Comini, E., Tempesti, E., Frigeri, C., and Sberveglieri, G., “TiO2 Thin Films by a Novel Sol-Gel Processing for Gas Sensor Applications”, Sensors and Actuators B: Chemical, Vol. 68, No. 1, pp. 189-196, 2000.
20. Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. A., Introduction to Spectroscopy, 4th ed., p. 657, Brooks/Cole Cengage Learning, Belmont, 2009.
21. Stobinski, L., Lesiak, B., Kövér, L., Tóth, J., Biniak, S., Trykowski, G., and Judek, J., “Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods”, Journal of Alloys and Compounds, Vol. 501, No. 1, pp. 77-84, 2010.
22. Yudianti, R., Onggo, H., Sudirman, Y. S., Iwata, T., and Azuma, J. I., “Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface”, Open Materials Science Journal, Vol. 5, No. 1, pp. 242-247, 2011.
24. Carp, O., Huisman, C. L., and Reller, A., “Photoinduced Reactivity of Titanium Dioxide”, Progress in Solid State Chemistry, Vol. 32, No. 1, pp. 33-177, 2004.
25. Chaveanghong, S., Smith, S. M., Sudchanham, J., and Amornsakchai, T., “Enhancement of Power Conversion Efficiency of Dye-Sensitized Solar Cells by using Multi-Walled Carbon Nanotubes/TiO2 Electrode”, Journal of the Microscopy Society of Thailand, Vol. 4, No. 1, pp. 36-40, 2011.
26. Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Beguin, F., and Bonnamy, S., “Synthesis and Characterization of Carbon Nanotubes-TiO2 Nanocomposites”, Carbon, Vol. 42, No. 5, pp. 1147-1151, 2004.
27. Lee, T. Y., Alegaonkar, P. S., and Yoo, J. B., “Fabrication of Dye Sensitized Solar Cell Using TiO2 Coated Carbon Nanotubes”, Thin Solid Films, Vol. 515, No. 12, pp. 5131-5135, 2007.
28. Yu, J., Fan, J., and Cheng, B., “Dye-Sensitized Solar Cells Based on Anatase TiO2 Hollow Spheres/Carbon Nanotube Composite Films”, Journal of Power Sources, Vol. 196, No. 18, pp. 7891-7898, 2011.
29. Chang, H., Hsieh, T. J., Chen, T. L., Huang, K. D., Jwo, C. S., and Chien, S. H., “Dye-Sensitized Solar Cells Made with TiO2-Coated Multi-Wall Carbon Nanotubes and Natural Dyes Extracted from Ipomoea”, Materials Transactions, Vol. 50, No. 12, pp. 2879-2884, 2009.
30. Birkholz, M., Thin Film Analysis by X-Ray Scattering, p. 378, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.
31. Morales, E. R., Mathews, N. R., Reyes-Coronado, D., Magaña, C. R., Acosta, D. R., Alonso-Nunez, G., Martinez, O.S., and Mathew, X., “Physical Properties of the CNT:TiO2 Thin Films Prepared by Sol-Gel Dip Coating”, Solar Energy, Vol. 86, No. 4, pp. 1037-1044, 2012.

ارتقاء امنیت وب با وف ایرانی