بررسی خصوصیات ساختاری، مورفولوژیکی و نوری نانوصفحات هیدروکسید منیزیم سنتز شده توسط روش رسوب‌دهی

نویسندگان

1 1. دانشکده مهندسی مواد، دانشگاه سمنان، سمنان

2 2. دانشکده شیمی، دانشگاه سمنان، سمنان

چکیده

در این مقاله، نانوصفحات هیدروکسید منیزیم با خلوص بالا توسط روش رسوب‌دهی‌تر با استفاده از شورابه غنی از یون‌های منیزیم به‌عنوان پیش‌ماده و NaOH به‌عنوان عامل رسوب‌دهی بدون استفاده از عامل پراکنده‌ساز در دمای اتاق با موفقیت سنتز شد. مشخصه‌یابی و بررسی خصوصیات مختلف نانوپودر به‌دست‌ آمده توسط آزمون پراش پرتو ایکس، میکروسکوپی الکترونی روبشی گسیل میدانی، طیف سنجی انرژی پرتوایکس، طیف سنجی مادون قرمز و طیف جذبی انجام شد. نتایج آزمون پراش پرتو ایکس و میکروسکوپی الکترونی روبشی گسیل میدانی نشان داد که پودر هیدروکسید منیزیم دارای نانوصفحاتی با میانگین اندازه کریستالیت 1/17 نانومتر و فاقد هرگونه ناخالصی است؛ که با نتایج طیف سنجی انرژی پرتوایکس و طیف سنجی مادون قرمز کاملاً در توافق بود. علاوه بر این، بررسی خصوصیات نوری نانوصفحات هیدروکسید منیزیم توسط طیف‌سنجی UV-Vis، یک گاف نواری نوری 5/5 الکترون ‌ولت را نشان داد. این گاف نواری پهن می‌تواند نوآوری مفید در وسایل نوری- الکترونیکی زیرمیکرون باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Structural, Morphological and Optical Properties of Magnesium Hydroxide Nanoplates Synthesized by Precipitation Route

نویسندگان [English]

  • S. yousefi 1
  • B. Ghasemi 1
  • M. Tajalli 1
  • A. Asghari 2
1 1. Department of Metallurgical Engineering, Semnan University, Semnan, Iran
2 2. Department of Chemistry, Semnan University, Semnan, Iran
چکیده [English]

In this paper, high purity magnesium hydroxide nanoplates were successfully synthesized by using brine rich in magnesium ions as precursor and NaOH as precipitating agent without using dispersant agent in the room temoerature. The study and characterization of various properties of obtained nanopowder was carried out by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Fluorescence Spectrometer (EDX), Fourier Transform Infrared Spectrophotometer (FTIR) and Ultraviolet–visible spectroscopy (UV-Vis). The FESEM and XRD analysis results showed that magnesium hydroxide powder had nanoplates with the average crystallite size 17.1nm and no impurity; that was in agreement with the result of EDX and FTIR perfectly. Furthermore, optical characteristics of magnesium hydroxide nanoplates by UV-Vis spectroscopy showed an optical band gap of 5.5 eV. This wide band gap can be a useful innovation in optoelectronic sub-micron devices.

کلیدواژه‌ها [English]

  • Magnesium hydroxide
  • nanoparticles
  • Brine
  • characterization
  • Optical properties
1. Rao, K. V. G., Ashok, C. H., Rao, K. V. G., and Chakra, C. H. S., “Structural Properties of MgO Nanoparticles: Synthesized by Co-Precipitation Technique”, International Journal of Science and Research, Vol. 8, pp. 43-46, 2014.
2. Zhou, W., Qiao, X. L., Zhang, L., Guo, J. Y., and Zheng, J., “Synthesis and Hemolytic Activity of Magnesium Hydroxide Nanoparticles”, Advanced Materials Research, Vol. 971, pp. 228-231, 2014.
3. Henrist, C., Mathieu, J. P. C., Vogels, A., and Rulmont, R., “Cloots, Morphological Study of Magnesium Hydroxide Nanoparticles Precipitated in Dilute Aqueous Solution”, Journal of Crystal Growth, Vol. 249, pp. 321-330, 2003.
4. Deng, X., Wang, Y., Peng, J., and Di, Y., “Current Efficiency of Synthesis Magnesium Hydroxide Nanoparticles via Electrodeposition”, 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME), pp. 207-211, 2015.
5. Wang, Q., Li, C., Guo, M., Sun, L., and Hu, C., “Hydrothermal Synthesis of Hexagonal Magnesium Hydroxide Nanoflakes”, Materials Research Bulletin, Vol. 51, pp. 35-39, 2014.
6. Sierra-Fernandez, A., Gomez-Villalba, L. S., Milosevic, O., Fort, R., and Rabanal, M. E., “Synthesis and Morpho-structural Characterization of Nanostructured Magnesium Hydroxide Obtained by a Hydrothermal Method, Ceramics International, Vol. 40, pp. 12285-12292, 2014.
7. Chen, H., Xu, C., Liu, Y., and Zhao, G., “Formation of Flower-like Magnesium Hydroxide Microstructure via a Solvothermal Process”, Electronic Materials Letters, Vol. 8, pp. 529-533, 2012.
8. Alavi, M. A., and Morsali, A., “Syntheses and Characterization of Mg(OH)2 and MgO Nanostructures by Ultrasonic Method”, Ultrasonics Sonochemistry, Vol. 17, pp. 441-446, 2010.
9. Song, G., Ma, S., Tang, G., and Wang, X., “Ultrasonic-assisted Synthesis of Hydrophobic Magnesium Hydroxide Nanoparticles”, Colloids Surfaces A Physicochemical Engineering Aspects, Vol. 364, pp. 99-104, 2010.
10. Pilarska, A., Nowacka, M., and Pilarski, K., “Preparation and Characterisation of Unmodified and Poly (Ethylene Glycol) Grafted Magnesium Hydroxid”, Physicochemical Problems of Mineral Processing, Vol. 49, pp. 701-712, 2013.
11. Bindhu, M. R., Umadevi, M., Kavin Micheal, M., Arasu, M. V., and Abdullah Al-Dhabi, N., “Structural, Morphological and Optical Properties of MgO Nanoparticles for Antibacterial Applications”, Materials Letters, Vol. 166, pp. 19-22, 2016.
12. Al-Hazmi, F., Umar, A., Dar, G. N., Al-Ghamdi, A. A., Al-Sayari, S. A., Al-Hajry, A., Kim, S. H., Al-Tuwirqi, R. M., Alnowaiserb, F., and El-Tantawy, F., “Microwave Assisted Rapid Growth of Mg(OH)2 Nanosheet Networks for Ethanol Chemical Sensor Application”, Journal of Alloys and Compounds, Vol. 519, pp. 4-8, 2012.
13. Beall, G. W., Duraia, E. S. M., El-Tantawy, F., Al-Hazmi, F., and Al-Ghamdi, A. A., “Rapid Fabrication of Nanostructured Magnesium Hydroxide and Hydromagnesite via Microwave-assisted Technique”, Powder Technology, Vol. 234, pp. 26-31, 2013.
14. Kong, Q. G., Qian, H. Y., Xiao, H. N., Kai, L., Wang, J. K., Zhu, J., and Li, J., “Additives Applied for Preparation of Superfine Mg(OH)2 Particles by Light-Burned MgO at Low Temperature”, Applied Mechanics and Materials, Vol. 130, pp. 1026-1030, 2011.
15. Zheng, J., and Zhou, W., “Low Temperature Synthesis of Nanoscale Magnesium Hydroxide under Normal Pressure”, Advanced Materials Research, Vol. 779, pp. 247-250, 2013.
16. Zheng, J., and Zhou, W., “Solution-phase Synthesis of Magnesium Hydroxide Nanotubes”, Materials Letters, Vol. 127, pp. 17-19, 2014.
17. Hsu, J. P., and Nacu, A., “Preparation of Submicron-sized Mg(OH)2 Particles Through Precipitation”, Colloids Surfaces A Physicochemical Engineering Aspects, Vol. 262, pp. 220-231, 2005.
18. Kumari, L., Li, W. Z., Vannoy, C. H., Leblanc, R. M., and Wang, D. Z., “Synthesis, Characterization and Optical Properties of Mg(OH)2 Micro-/Nanostructure and its Conversion to MgO”, Ceramics International, Vol. 35, pp. 3355-3364, 2009.
19. Elahi, M., and Souri, D., “Study of Optical Absorption and Optical Band Gap Determination of Thin Amorphous TeO2 -V2O5 -MoO3 Blown Films”, Indian Journal of Pure Applied Physics, Vol. 44, pp. 468-472, 2006.
20. Kulkarni, S. K., Nanotechnology: Principles and Practices, Springer International Publishing, Cham, 2015.
21. Jiang, W., Hua, X., Han, Q., Yang, X., Lu, L., and Wang, X., “Preparation of Lamellar Magnesium Hydroxide Nanoparticles via Precipitation Method”, Powder Technology, Vol. 191, pp. 227-230, 2009.
22. Chen, Y., Zhou, T., Fang, H., Li, S., Yao, Y., and He, Y., “A Novel Preparation of Nano-Sized Hexagonal Mg(OH)2”, Procedia Engineering, Elsevier B.V., pp. 388-394, 2015.
23. Márquez, J. A. R., Rodríguez, C. M. B., Herrera, C. M., Rosas, E. R., Angel, O. Z., and Pozos, O. T., “Effect of Surface Morphology of ZnO Electrodeposited on Photocatalytic Oxidation of Methylene Blue Dye Part I: Analytical Study”, International Journal of Electrochemical Science, Vol. 6, pp. 4059-4069, 2011.
24. Chang Chun, C., Ping, L., and Lu, C., “Synthesis and Characterization of Nano-Sized ZnO Powders by Direct Precipitation Method”, Chemical Engineering Journal, Vol. 144, pp. 509-513, 2008.
25. Tamilselvi, P., Yelilarasi, A., Hema, M., and Anbarasan, R., “Synthesis of Hierarchical Structured MgO by Sol-gel Method”, Nano Bulltein, Vol. 2, pp. 106-130, 2013.
26. Esmaeili, E., Khodadadi, A., and Mortazavi, Y., “Microwave-induced Combustion Process Variables for MgO Nanoparticle Synthesis using Polyethylene Glycol and Sorbitol”, Journal of the European Ceramic Society, Vol. 29, pp. 1061-1068, 2009.
27. Gao, Y., Wang, H., Su, Y., Shen, Q., and Wang, D., “Influence of Magnesium Source on the Crystallization Behaviors of Magnesium Hydroxide”, Journal of Crystal Growth, Vol. 310, pp. 3771-3778, 2008.
28. Wang, S., Li, G., Xu, W., Liu, C., Dai, L., and Zhu, H.-C., “Facile Preparation and Application of Magnesium Hydroxide Assembly Spheres”, Research on Chemical Intermediates, Vol. 42, pp. 2661-2668, 2016.
29. Al-Hazmi, F., Alnowaiser, F., Al-Ghamdi, A. A., Al-Ghamdi, A. A., Aly, M. M., Al-Tuwirqi, R. M., and El-Tantawy, F., “A New Large- Scale Synthesis of Magnesium Oxide Nanowires: Structural and Antibacterial Properties”, Superlattices and Microstructures, Vol. 52, pp. 200-209, 2012.
30. Al-Ghamdi, A. A., Al-hazmi, F., Alnowaiser, F., Al-Tuwirqi, R. M., Al-Ghamdi, A. A., Alhartomy, O.A., El-Tantawy, F., and Yakuphanoglu, F., “A New Facile Synthesis of Ultra Fine Magnesium Oxide Nanowires and Optical Properties”, Journal of Electroceramics, Vol. 29, pp. 198-203, 2012.
31. Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N., and Al-Douri, Y., “XPS and Optical Studies of Different Morphologies of ZnO Nanostructures Prepared by Microwave Methods”, Ceramics International, Vol. 39 pp. 2283-2292, 2013.
32. Al-Gaashani, R., Radiman, S., Al-Douri, Y., Tabet, N., and Daud, A. R., “Investigation of the Optical Properties of Mg(OH)2 and MgO Nanostructures Obtained by Microwave-assisted Methods”, Journal of Alloys and Compounds, Vol. 521, pp. 71-76, 2012.

ارتقاء امنیت وب با وف ایرانی