بررسی اثر اتانول و اسید آسکوربیک بر استخراج دی اکسید تیتانیم از ایلمنیت توسط اسید اگزالیک

نویسندگان

دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

چکیده

در مطالعه حاضر، از تشویه قلیایی و لیچینگ به‌وسیله اسید اگزالیک به‌منظور استخراج دی اکسید  تیتانیم از ایلمنیت استفاده شده و اثر اتانول و اسید آسکوربیک بر مقدار خلوص و بازیابی دی اکسید  تیتانیم بررسی شده  است. روند انجام مراحل شامل تشویه قلیایی ایلمنیت توسط نمک کربنات سدیم به مدت چهار ساعت در دمای 900 درجه سانتیگراد، لیچینگ ایلمنیت تشویه شده توسط آب مقطر به مدت یک ساعت در دمای اتاق و لیچینگ توسط مخلوطی از اسید اگزالیک 47/0 مولار و مقادیر متفاوتی از اسید آسکوربیک و اتانول در دمای 65 درجه سانتی‌گراد بوده  است. نتایج نهایی نشان داد که استفاده از اتانول باعث افزایش میزان بازیابی و به‌کار بردن اسید آسکوربیک سبب افزایش میزان خلوص دی اکسید  تیتانیم استخراج شده می‌شود و حضور توأم این دو عامل سبب افزایش هم‌زمان میزان خلوص و بازیابی محصول نهایی می شود. درنهایت پس از انتخاب اسید اگزالیک 47/0 مولار، اسید آسکوربیک 005/0 مولار و اتانول 48 درصد به‌عنوان شرایط مناسب برای محیط لیچینگ، با افزایش زمان و دمای لیچینگ به 16 ساعت و 80 درجه سانتی‌گراد، امکان رسیدن به دی اکسید  تیتانیم با خلوص 3/93 درصد و 9/90 درصد میسر شد

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Ethanol and Ascorbic Acid on Titanium Dioxide Extraction from Ilmenite by Oxalic Acid

نویسندگان [English]

  • V. Mohammadpour
  • M. Soltanieh
  • M. Adeli
School of Metallurgy & Materials Engineering, Iran University of Science and Technology.
چکیده [English]

In the present study, alkali roasting and oxalic acid leaching were used to extract titanium dioxide from ilmenite, and the effect of ethanol and ascorbic acid on the purity and recovery of titanium dioxide was investigated. In this research, ilmenite was alkali roasted with sodium carbonate for 4 hours at 900˚C. Then, the roasted ilmenite was leached with distilled water for 1 hour at room temperature. Finally, leaching with a mixture of 0.47M oxalic acid and different amounts of ascorbic acid and ethanol was performed at 65˚C. The results showed that using ethanol caused an increase in the amount of recovery and ascorbic acid increased the purity of the extracted titanium dioxide; also, the presence of these two factors at the same time simultaneously increased the amount of purity and recovery of the final product. Eventually, by choosing 0.47M oxalic acid, 0.005M ascorbic acid, and 48% ethanol as the appropriate conditions for leaching media and increasing the leaching time and temperature to 16 hours and 80˚C, it was possible to get titanium dioxide purities which were as high as 93.3% and 90.9%, respectively.

کلیدواژه‌ها [English]

  • titanium dioxide
  • Ilmenite
  • Alkali Roasting
  • Oxalic Acid
  • Ascorbic Acid
  • Ethanol
1. Sang, L., Zhao, Y., and Burda, C., “TiO2 Nanoparticles as Functional Building Blocks”, Chemical Reviews, Vol. 114, No. 19, pp. 9283-9318, 2014.
2. Chen, G., Song, Z., Chen, J., Peng, J., and Srinivasakannan, C., “Evaluation of the Reducing Product of Carbonthermal Reduction of Ilmenite Ores”, Journal of Alloys and Compounds, Vol. 577, pp. 610-614, 2013.
3. Habashi, F., Handbook of Extractive Metallurgy II, p. 1140, Wiley-VCH, Weinheim, 1997.
4. Ephraim, J. K., and Jha, A., “Leaching Studies of Alkali Roasted Bomarilmenite and Anatase During the Processing of Synthetic Rutile”, Hydrometallurgy, Vol. 152, pp. 113-119, 2015.
5. Chen, Y., Hwang, T., Marsh, M., and Williams, J. S., “Mechanically Activated Carbothermic Reduction of Ilmenite”, Metallurgical and Materials Transactions A, Vol. 28, No. 5, pp. 1115-1121, 1997.
6. Nafeaa, I. A., Zekry, A. F., Farag, A. B., Khalifa, M. G., El-Hussiny, N. A., and Shalabi, M. E. H., “Kinetic Study of Formation of Sodium Titanets by Roasting of Soda Ash and Ilmenite Ore Concentrate”, Indian Chemical Engineer, Vol. 55, No. 4, pp. 283-293, 2013.
7. Sanchez-Segado, S., Makanyire, T., Escudero-Castejon, L., Hara, Y., and Jha, A., “Reclamation of Reactive Metal Oxides from Complex Minerals using Alkali Roasting and Leaching: An Improved Approach to Process Engineering”, Green Chemistry, Vol. 17, No. 4, pp. 2059-2080, 2015.
8. Manhique, A. J., Focke, W. W., and Madivate, C., “Titania Recovery from Low-Grade Titanoferrous Minerals”, Hydrometallurgy, Vol. 109, No. 3-4, pp. 230-236, 2011.
9. Liu, Y., Qi, T., Chu, J., Tong, Q., and Zhang, Y., “Decomposition of Ilmenite by Concentrated KOH Solution under Atmospheric Pressure”, International Journal of Mineral Processing, Vol. 81, No. 2, pp. 79-84, 2006.
10. Lahiri, A., and Jha, A., “Selective Separation of Rare Earths and Impurities from Ilmenite Ore by Addition of K+ and Al3+ Ions”, Hydrometallurgy, Vol. 95, No. 3-4, pp. 254-261, 2009.
11. Foley, E., and MacKinnon, K. P., “Alkaline Roasting of Ilmenite”, Journal of Solid State Chemistry, Vol. 1, No. 3-4, pp. 566-575, 1970.
12. Meng, F., Liu, Y., Chu, J., Wang, W., and Qi, T., “Structural Control of Na2TiO3 in Pre-Treating Natural Rutile Ore by Alkali Roasting for TiO2 Production”, The Canadian Journal of Chemical Engineering, Vol. 92, No. 8, pp. 1346-1352, 2014.
13. Mukherjee, A., Raichur, A. M., and Modak, J. M., “Dissolution Studies on TiO2 with Organics”, Chemosphere, Vol. 61, No. 4, pp. 585-588, 2005.
14. Sanchez-Segado, S., Lahiri, A., and Jha, A., “Alkali Roasting of Bomar Ilmenite: Rare Earths Recovery and Physico-Chemical Changes”, Open Chemistry, Vol. 13, No. 1, pp. 270-278, 2014.
15. Lahiri, A., “Influence of Ascorbate and Oxalic Acid for the Removal of Iron and Alkali from Alkali Roasted Ilmenite to Produce Synthetic Rutile”, Industrial & Engineering Chemistry Research, Vol. 49, No. 18, pp. 8847-8851, 2010.
16. Suter, D., Banwart, S., and Stumm, W., “Dissolution of Hydrous Iron (III) Oxides by Reductive Mechanisms”, Langmuir, Vol. 7, No. 7, pp. 809-813, 1991.
17. Nayl, A. A., and Aly, H. F., “Acid Leaching of Ilmenite Decomposed by KOH”, Hydrometallurgy, Vol. 97, No. 1-2, pp. 86-93, 2009.
18. Nayl, A. A., Awwad, N. S., and Aly, H. F., “Kinetics of Acid Leaching of Ilmenite Decomposed by KOH. Part 2. Leaching by H2SO4 and C2H2O4,” Journal of Hazardous Materials, Vol. 168, No. 2-3, pp. 793-799, 2009.
19. Laxmi, T., Mohapatra, R., and Rao, R. B., “Preliminary Investigations on Alkali Leaching Kinetics of Red Sediment Ilmenite Slag”, Korean Journal of Chemical Engineering, Vol. 30, No. 1, pp. 123-130, 2013.
20. Siffert, C., and Sulzberger, B., “Light-Induced Dissolution of Hematite in the Presence of Oxalate. A Case Study”, Langmuir, No. 12, pp. 1627-1634, 1991.
21. Salmimies, R., “Acidic Dissolution of Iron Oxides and Regeneration of a Ceramic”, Ph.D Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2012.
22. Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., and Kontopoulos, A., “Dissolution of Hematite in Acidic Oxalate Solutions”, Hydrometallurgy, Vol. 44, No. 3, pp. 287-299, 1997.
23. Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., and Kontopoulos, A., “Removal of Iron from Silica Sand by Leaching with Oxalic Acid”, Hydrometallurgy, Vol. 46, No. 1-2, pp. 215-227, 1997.
24. Cornell, R. M., “Photochemical Dissolution of Goethite in Acid/Oxalate Solution”, Clays and Clay Minerals, Vol. 35, No. 5, pp. 347-352, 1987.
25. Lee, S. O., Tran, T., Jung, B. H., Kim, S. J., and Kim, M. J., “Dissolution of Iron Oxide using Oxalic Acid”, Hydrometallurgy, Vol. 87, No. 3-4, pp. 91-99, 2007.
26. Chandra, I., and Jeffrey, M. I., “A Fundamental Study of Ferric Oxalate for Dissolving Gold in Thiosulfate Solutions”, Hydrometallurgy, Vol. 77, No. 3-4, pp. 191-201, 2005.
27. Samal, S., “Preparation of Synthetic Rutile from Pre-Treated Ilmenite/Ti-rich Slag with Phenol and Resorcinol Leaching Solutions”, Hydrometallurgy, Vol. 137, pp. 8-12, 2013.
28. Habib, M. A., Biswas, R. K., Ali, M. R., and Hasan, A. K. M., “Leaching of Non-Treated Ilmenite by HCl-CH3OH-H2O Mixture and Its Kinetics”, Vol. 13, pp. 53-59, 2006.
29. Momade, F. W., and Momade, Z., “A Study of the Kinetics of Reductive Leaching of Manganese Oxide Ore in Aqueous Methanol-Sulphuric Acid Medium”, Hydrometallurgy, Vol. 54, No. 1, pp. 25-39, 1999.
30. Girgin, I., “Leaching of Ilmenite in HCl-H2O, HCl-CH3OH-H2O and HCl-CH3OH Solutions”, Hydrometallurgy, Vol. 24, No. 1, pp. 127-134, 1990.
31. Girgin, I., Türker, L., and Goodall, D., “Effect of Phenol and Resorcinol on Leaching of Ilmenite with HCl-CH3OH and HCl-C2H5OH Solutions”, International Journal of Mineral Processing, Vol. 32, No. 1-2, pp. 147-159, 1991.
32. Samal, S., Rao, K. K. K., Mukherjee, P. S. S., and Mukherjee, T. K. K., “Statistical Modelling Studies on Leachability of Titania-Rich Slag Obtained from Plasma Melt Separation of Metallized Ilmenite”, Chemical Engineering Research and Design, Vol. 86, No. 2, pp. 187-191, 2008.
33. Banwart, S., Davies, S., and Stumm, W., “The Role of Oxalate in Accelerating the Reductive Dissolution of Hematite (α-Fe2O3) by Ascorbate”, Colloids and Surfaces, Vol. 39, No. 2, pp. 303-309, 1989.
34. Lee, S. O., Tran, T., Park, Y. Y., Kim, S. J., and Kim, M. J., “Study on the Kinetics of Iron Oxide Leaching by Oxalic Acid”, International Journal of Mineral Processing, Vol. 80, No. 2-4, pp. 144-152, 2006.
35. Panias, D., Taxiarchou, M., Paspaliaris, I., and Kontopoulos, A., “Mechanisms of Dissolution of Iron Oxides in Aqueous Oxalic Acid Solutions”, Hydrometallurgy, Vol. 42, No. 2, pp. 257-265, 1996.
36. Choi, H. L., and Park, C., “Effect of Ultrasonic Treatment on Ripening of Titanium Oxalate Salt from Solution”, Journal of Materials Science, Vol. 34, No. 15, pp. 3591-3596, 1999.

تحت نظارت وف ایرانی