بررسی خواص و مقایسه خوردگی و سایش پوشش‌های Zn-Ni و Zn-Ni/P

نویسندگان

1 1- دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی دانشگاه تهران

2 2- مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، دانشگاه صنعتی سهند

چکیده

در این تحقیق پوشش‌های ساده Zn-Ni و کامپوزیتی Zn-Ni/PTFE از حمام‌های سولفاتی رسوب‌گذاری الکتریکی شدند. از آزمون پلاریزاسیون پتانسیودینامیک و طیف‌نگاری امپدانس الکتروشیمیایی (EIS) برای بررسی رفتار خوردگی پوشش‌ها استفاده شد. سختی و رفتار تریبولوژیکی پوشش‌ها به‌ترتیب با استفاده از دستگاه سختی‌سنجی ویکرز و روش پین روی دیسک مورد بررسی قرار گرفتند. به‌منظور بررسی ترکیب و مورفولوژی پوشش‌ها و مسیر سایش از میکروسکوپ الکترونی روبشی (SEM) مجهز به طیف‌نگار پرتو ایکس (EDS) استفاده شد. نتایج آزمون خوردگی حاکی از آن است که دانسیته جریان خوردگی پوشش Zn-Ni حدود 30 درصد پوشش کامپوزیتی است. سختی پوشش ساده نیز با افزودن ذرات پلی تترا فلوئوراتیلن کاهش یافته است. با وجود این کاهش سختی، مقدار تلفات سایشی و ضریب اصطکاک با ورود ذرات پلی تترا فلوئوراتیلن حدوداً نصف می‌شود. همچنین مکانیزم سایش در پوشش کامپوزیتی از نوع خراشان خفیف بوده ولی در پوشش فاقد ذرات تغییر فرم پلاستیک و سایش چسبان مکانیزم اصلی سایش هستند. مقدار تلفات سایشی و ضریب اصطکاک در این پوشش به‌ترتیب حدود 43 و 57 درصد کمتر از پوشش ساده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Comparative Investigation into Corrosion and Wear Properties of Zn-Ni and Zn-Ni/PTFE Coatings

نویسندگان [English]

  • M. Tafreshi 1
  • S. R. Allahkaram 1
  • S. Mahdavi 2
1 1. School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 2. Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran.
چکیده [English]

In this research, Zn-Ni and Zn-Ni/PTFE coatings were electrodeposited from sulfate-based electrolytes. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were used to investigate the  corrosion properties of the coatings. Hardness and tribological behavior of the coatings were examined by the Vickers microhardness testing machine and the  pin-on-disc method, respectively. Chemical composition and morphology of the as-deposited and worn surfaces of the coatings were studied by a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). According to the results,  the corrosion current density of the  Zn-Ni film was about 30% of that of the composite coating. Hardness of the alloy film was partially decreased by the  incorporation of Polytetrafluoroethylene (PTFE) particles. However, the wear loss and coefficient of friction of the  Zn-Ni/PTFE coating were, respectively, about 43% and 57% of those of the Zn-Ni film. Moreover, wear mechanism was changed from plastic deformation and adhesive wear to slight abrasion by  the co-deposition of PTFE particles.

کلیدواژه‌ها [English]

  • electrodeposition
  • Zn-Ni
  • Zn-Ni/PTFE
  • Corrosion
  • Tribology
  • Solid lubricant
1. Marder, A., “The Metallurgy of Zinc-coated Stee”, Progress in Materials Science, Vol. 45, pp. 191-271, 2000.
2. Boshkov, N., “Influence of the Alloying Component on the Protective Ability of Some Zinc Galvanic Coatings”, Electrochimica Acta, Vol. 51, pp. 77-84, 2005.
3. Crotty, D., “Zinc Alloy Plating for the Automotive Industry”, Metal Finishing, Vol. 94, pp. 54-58, 1996.
4. Jensen, J. D., Gabe, D., and Wilcox, G., “The Practical Realisation of Zinc-Iron CMA Coatings”, Surface and Coatings Technology, Vol. 105, pp. 240-250, 1998.
5. Zhang, Z., “Study on the Behavior of Zn-Fe Alloy Electroplating”, Journal of Electroanalytical Chemistry, Vol. 516, pp. 127-130, 2001.
6. Sorkhabi, H. A., Hahrah, A., Parvinin-Ahmadi, N., and Manzoori, J., “Zinc-Nickel Alloy Coatings Electrodeposited from a Chloride Bath using Direct and Pulse Current”, Surface and Coatings Technology, Vol. 140, pp. 278-283, 2001.
7. Tafreshi, M., Allahkaram, S. R., and Farhangi, H., “Comparative Study on Structure, Corrosion Properties and Tribological Behavior of Pure Zn and Different Zn-Ni Alloy Coatings”, Materials Chemistry and Physics, Vol. 183, pp. 263-272, 2016.
8. Lee, L., Régis, É., Descartes, S., and Chromik, R. R., “Fretting Wear Behavior of Zn-Ni Alloy Coatings”, Wear, Vol. 330-331, pp. 112-121, 2015.
9. Qiao, X., Li, H., Zhao, W., and Li, D., “Effects of Depositio S. Ghaziof N Temperature on Electrodeposition of Zinc-Nicle Alloy Coatings”, Electrochimica Acta, Vol. 89, pp. 771-777, 2013.
10. Dini, J. W., “Corrosion Resistance of Zinc-Nickel Plated Uranium/0.75 Titanium Alloy”, Metal Finishing, Vol. 78, pp. 45-48, 1980,
11. Steinbicker, R. N., and Fountoulakis, S. G, “Production of Zinc-Nickel Electroplated Coatings”, Iron and Steel Engineer,Vol. 7, pp. 28-31, 1989.
12. Gnanamuthu, R. M., Mohan, S., and Saravanan, G., “Comparative Study on Structure, Corrosion and Hardness of Zn-Ni Alloy Deposition on AISI 347 Steel Aircraft Material”, Journal of Alloys and Compounds, Vol. 513, pp. 449-454, 2012.
13. Panagopoulos, C. N., Georgarakis, K. G., and Agathocleous, P. E., “Sliding Wear Behaviorof Zinc-Nickel Alloy Electrodeposits”, Tribology International, Vol. 36, pp. 619-623, 2003.
14. Kalantary, M. R., Wilcox, G. D., and Gabe, D. R., “The Production of Compositionally Mod-ulated Alloys by Simulated High Speed Electrodeposition from a Single Solution”, Electrochim Acta, Vol. 40, pp. 1609-1616, 1995.
15. Dong, Y. S., Lin, P. H., and Wang, H. X., “Electroplating Preparation of Ni-Al2O3 Graded Composite Coatings using a Rotating Cathode”, Surface and Coatings Technology, Vol. 200, pp. 3633-3636, 2006.
16. Blejan, D., and Muresan, L. M., “Corrosion Behavior of Zn-Ni Al2O3 Nanocomposite Coatings Obtained by Electrodeposition from Alkaline Electrolytes”, Materials and Corrosion, Vol. 64, pp. 433-438, 2013.
17. Katamipour, A., Farzam, M., and Danaee, I., “Effects of Sonication on Anticorrosive and Mechanical Properties of Electrodeposited Ni-Zn-TiO2 Nanocomposite Coatings”, Surface and Coatings Technology, Vol. 254, pp.358-363, 2014.
18. Fayomi, O. S. I., Abdulwahab, M., and popoola, A. P. I., “propertiles Evaluation of Ternary Surfactant -induced Zn-Ni-Al2O3 Films on Mild Steel by Electrolytic Chemical Deposition”, Journal of Ovonic Research, Vol. 9, No. 5, pp. 123-132, 2013.
19. Ger, M. D., and Hwang, B. J., “Effect of Surfactants on Codeposition of PTFE Particles with Electroless Ni-P Coating”, Materials Chemistry and Physics,Vol. 76, pp. 38-45, 2002.
20. Ger, M. D., Hou, K. H., and Hwang, B. J., “Transient Phenomena of the Codeposition of PTFE with Electroless Ni-P Coating at the Early Stage”, Materials Chemistry and Physics, Vol. 87, pp. 102-108, 2004.
21. Zhao, Q., Liu, Y., Mu¨ller-Steinhagenb, H., and Liu, G., “Graded Ni-P-PTFE Coatings and Their Potential Applications”, Surface and Coatings Technology, Vol. 155, pp. 279-284, 2002.
22. Mafi, I. R., and Dehghanian, Ch., “Comparison of the Coating Properties and Corrosion Rates in Electroless Ni-P/PTFE Composites Prepared by Different Types of Surfactants”, Applied Surface Science, Vol. 257, pp. 8653-8658, 2011.
23. Wan, Y., Yu, Y., Cao, L., Zhang, M., Gao, J., and Qi, C., “Corrosion and Tribological Performance of PTFE-Coated Electroless Nickel Boron Coatings”, Surface and Coatings Technology, Vol. 307, pp. 316-323, 2016.
24. Boshkov, N., “Composition of the Corrosion Products of Galvanic Alloys Zn-Co and Their Influence on the Protective Ability”, Surface and Coatings Technology, Vol. 157, pp. 171-178, 2002.
25. Abdelrehim, S. S., Fouad, E. E., and Abdelwahab, S. M., “Electroplating of Zinc-Nickel Binary Alloys from Acetate Baths”, Electrochimica Acta, Vol. 41, pp. 1413-1418, 1996.
26. Ghaziof, S., and Gao, W., “Electrodeposition of Single Gamma Phased Zn-Ni Alloy Coatingsfrom Additive-free Acidic Bath”, Applied Surface Science, Vol. 311, PP. 635-642, 2014.
27. Alfantazi, A. M., and Erb, U., “Pulse-plated Zinc-Nickel Alloy Coatings”, Corrosion Engineering, Vol. 52, pp. 880-888, 1996.
28. Abou-Krisha, M. M., Assaf , F. H., and Toghan, A. A., “Electrodeposition of Zn-Ni Alloys from Sulfate Bath”, Journal of Solid State Electrochemistry, Vol. 6, No. 3, pp. 244-252, 2007.
29. Eliaz, N., Venkatakrishna, K., and Chitharanjan Hegde, A., “Electroplating and Characterization of Zn-Ni, Zn-Co and Zn-Ni-Co Alloys”, Surface & Coatings Technology, Vol. 205, pp. 1969-1978, 2010.
30. Wang, X., Nie, M., Wang, C. T., Wang, S. C., and Gao, N., “Microhardness and Corrosion Properties of Hypoeutectic Al-7Si Alloy Processed by High-pressure Torsion”, Materials & Design, Vol. 83, pp. 193-202, 2013.
31. Liu, Z., Dong, Y., Chu, Z., Yang, Y., Li, Y., and Yan, D., “Corrosion Behavior of Plasma Sprayed Ceramic and Metallic Coatings on Carbon Steel in Simulated Seawater”, Materials & Design, Vol. 52, pp. 630-637, 2013.
32. Wang, B., Zhang, L., Su, Y., Mou, X., Xiao, Y., and Liu, J., “Investigation on the Corrosion Behavior of Aluminum Alloys 3A21 and 7A09 in Chloride Aqueous Solution”, Materials & Design, Vol. 50, pp. 15-21, 2013.
33. Sziraki, L., Kuzmann, E., Papp, K., Chisholm, C.U., El-Sharif, M. R., and Havancsak, K., “Electrochemical Behaviour of Amorphous Electrodeposited Chromium Coatings”, Materials Chemistry and Physics, Vol. 133, pp. 1092-1100, 2012.
34. Archard, J. F., “Contact and Rubbing of Flat Surfaces”, Journal of Applied Physics, Vol. 24, pp. 981-988, 1953.
35. Huang, J. H., and Haun Lee, Y., “Evaluation of Uni-axially Expanded PTFE as a Gasketmaterial for Fluid Sealing Applications”, Materials Chemistry and Physics, Vol. 70, pp. 197-207, 2001.
36. Mahdavi, S., and Allahkaram, S. R., “Composition, Characteristics and Tribological Behavior of Cr, CoeCr and CoeCr/TiO2 Nano-composite Coatings Electrodeposited from Trivalent Chromium Based Baths”, Journal of Alloys and Compounds, Vol. 635, pp. 150-157, 2015.

تحت نظارت وف ایرانی