بررسی ویژگی‌های مغناطیسی و ریزساختاری نانوذرات کامپوزیتی هگزافریت استرانسیوم جانشانی شده با کاتیون‌های مس/ لانتانیوم به‌روش سل- ژل خوداحتراقی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

نانوذرات هگزافریت استرانسیوم گونه M جانشانی شده با لانتانیوم و مس SrFe12-xCuxO19-Sr1-xLaxFe12-xCuxO19) با نسبت‌های مولی (0/5-0/4-0/3-0/2-0/1 =x) به‌روش سل- ژل خوداحتراقی تهیه شدند. نخست ژلی از نیترات‌های فلزی با نسبت‌های مولی بالا تهیه و پودر حاصل در دمای 950 درجه سانتی‌گراد پخت شد. ویژگی‌های ساختاری و ریخت نمونه‌ها با پراش‌سنج پرتوی ایکس و میکروسکوپ الکترونی روبشی بررسی شدند. همچنین، از دستگاه مغناطیس‌سنج نمونه ارتعاشی برای بررسی ویژگی‌های مغناطیسی بهره‏ گرفته شد. تصاویر میکروسکوپی نشان داد که نانوذرات میانگین اندازه‌ای حدود 100 نانومتر داشتند. نتایج حاصل از آزمون پراش‌سنجی پرتو‏ی ایکس نشان داد نمونه Sr1-xLaxFe12-xCuxO19 تک‌فاز بوده و به‌نظر می‌رسد یون‌های +Cu2 در جایگاه‌های بلوری ساختار SrFe12O19 جانشین یون‌های +Fe3 شده‌اند. نتایج نشان دادند ثابت شبکه (a) با افزایش مقدار آلایش مس، تقریباً ثابت مانده است؛ درحالی که مقدار ثابت شبکه (c) با افزایش x، کاهش می‌یابد. منحنی پسماند مغناطیسی نشان داد با افزودن لانتانیوم، مغناطش اشباع و همچنین نیروی وادارندگی افزایش می یابد که این به علت تغییر توزیع یون‌ها و ناهمسانگردی شکلی نانوذرات ‎است. این تغییرات چشمگیر در ویژگی‌های مغناطیسی نمونه در اثر جایگزینی یون‌ها دیده شد. بیشترین میزان مغناطش اشباع (emu/g73/52) و کمترین نیروی پسماندزدا (Oe1230) مربوط به نمونه با ترکیب‌های Sr0.9La0.1Fe11.9Cu0.1O19 و SrFe11.5Cu0.5O19 به‌ترتیب برای x های 0/1 و 0/5 بود.
 

کلیدواژه‌ها


عنوان مقاله [English]

INVESTING MICRODSTRUCTURE AND MAGNETIC PROPERTIES OF Sr HEXAFERRITE COMPOSITES DOPPED WITH Cu/La BY SELF-COMBUSTION METHOD

نویسندگان [English]

  • M. Ghorbani
  • H. Khorsand
Faculty of Material Science and Engineering K. N. Toosi University of Technology
چکیده [English]

Strontium hexaferrite M-type nanoparticles doped with La and Cu (SrFe12-xCuxO19-Sr1-xLaxFe12-xCuxO19) with different mole fractions (x=0.1-0.2-0.3-0.4-0.5) synthesized by self-combustion sol-gel technique. Firstly, a gel of metal nitrates with the above-mentioned mole fractions were fabricated and the obtained powder was cured at 950°C. Microstructural properties and the morphology of the compounds were investigated by employing X-ray diffraction (XRD) and scanning electron microscopy (SEM). Also, in order to investigate the magnetic properties, Vibrating Sample Magnetometer (VSM) was used. SEM images revealed that the particles had an average size of about 100 nm. Cu2+ ions were substituted with Fe3+ ions within the crystalline sites of SrFe12O19 structure. It was shown that the lattice parameter (a) remained approximately unchanged with an increase in Cu-dopped while the lattice parameter (c) decreased with increasing the mole fraction (x). By using VSM hysteresis diagrams, it was observed that the saturated magnetization and coercive force increased with the addition of La; this was attributed to the variation in the distribution of ions and the shape anisotropy of the nanoparticles. These significant changes in the magnetic properties were for the sample with the composition of Sr1-xLaxFe12-xCuxO19 and SrFe12-xCuxO19, for the x=0.1 and x=0.5, respectively.

کلیدواژه‌ها [English]

  • Strontium hexaferrite
  • Sol-gel
  • magnetic properties
  • Doped elements
1. Neupane, D., Adhikari, H., Sapkota, B., Candler, J., Gupta, R., and Mishra, S. R., “Surfactant Assisted Synthesis of SrFe 10 Al 2 O 19: Magnetic and Supercapacitor Ferrite”, MRS Advances, Vol. 1, No. 45, pp. 3099-3106, 2016.
2. Peng, L., Li, L., Wang, R., Hu, Y., Tu, X., and Zhong, X., “Effect of La-CO Substitution on the Crystal Structure and Magnetic Properties of Low Temperature Sintered Sr1-xLaxFe12-xCoxO19 (x=0-0.5) Ferrites”, Journal of Magnetism and Magnetic Materials, Vol. 393, No. 22, pp. 399-403, 2015.
3. Yasmin, N., Iqbal, M. Z., Zahid, M., Gillani, S. F., Ashiq, M. N., Inam, I., Abdolsatar, S., and Mirza, M., “Structural and Magnetic Studies of Ce-Zn Doped M-Type SrFe12O19 Hexagonal Ferrite Synthesized by Sol-Gel Auto-Combustion Method”, Ceramics International, Vol. 45, No. 1, pp. 462-467, 2019.
4. Peng, L., Li, L., Zhong, X., Wang, R., and Tu, X., “Crystal Structure and Physical Properties of Microwave Sintered Sr1-xLaxFe12-xCuxO19 (x=0-0.5) Ferrites for LTCC Applications”, Journal of Magnetism and Magnetic Materials, Vol. 411, No. 15, pp. 62-67, 2016.
5. Güler, P., Ertuğ, B., Işıkcı, N. İ., and Kara, A., “Effect of Rare-Earth Co-Doping on the Microstructural and Magnetic Properties of BaFe12O19”, Advances in Materials Science, Vol. 20, No. 3, pp. 23-35, 2020.
6. Seyyed Afghahi, S., Jafarian M., and Salehi M., “Investigating the Effect of Co-Cr-Sn Ions Substitution on Microstructure and Magnetic Properties of M-Type Barium Hexaferrites”, Journal of Advanced Materials in Engineering, Vol. 3, No. 3, pp. 69-80, 2016.
7. Ebrahimi, F., Ashrafizade F., and Bakhshi S. R., “Preparation and Optimization of Alumina Templates for Synthesis of Strontium Ferrite Nanowires and Comparing them with Strontium Ferrite Nanopowders Synthesized with Sol-Gel Method”, Journal of Advanced Materials in Engineering, Vol. 3, No. 1, pp. 11-22, 2017.
8. Hessien, M. M., El-Bagoury, N., Mahmoud, M. H. H., Alsawat, M., Alanazi, A. K., and Rashad, M. M., “Implementation of La3+ Ion Substituted M-Type Strontium Hexaferrite Powders for Enhancement of Magnetic Properties”, Journal of Magnetism and Magnetic Materials, Vol. 498, No. 6, p. 166187, 2020.
9. Mozaffari, M., Taheri, M., and Amighian, J., “Preparation of Barium Hexaferrite Nanopowders by the Sol-Gel Method, using Goethite”, Journal of Magnetism and Magnetic Materials, Vol. 321, No. 9, pp. 1285-1289, 2009.
10. Kumar, S., Guha, S., Supriya, S., Pradhan, L. K., and Kar, M., “Correlation Between Crystal Structure Parameters with Magnetic and Dielectric Parameters of Cu-Doped Barium Hexaferrite”, Journal of Magnetism and Magnetic Materials, Vol. 499, No. 7, p. 166213, 2020.
11. Manhas, A., and Singh, M., “Remarkable Room Temperature Magnetic Behaviour of Ferroxplana Sr-Cu-Zn Doped Z-type Hexaferrites”, Journal of Magnetism and Magnetic Materials, Vol. 503, No. 11, p. 166640, 2020.
12. Lechevallier, L., Le Breton, J. M., Teillet, J., Morel, A., Kools, F., and Tenaud, P., “Mössbauer Investigation of Sr1-xLaxFe12-yCoyO19 Ferrites”, Physica B: Condensed Matter, Vol. 327, No. 2-4, pp. 135-139, 2003.
13. Qiao, L., You, L., Zheng, J., Jiang, L. and Sheng, J., “The Magnetic Properties of Strontium Hexaferrites with La-Cu Substitution Prepared by SHS Method”, Journal of Magnetism and Magnetic Materials, 318, No. 1-2, pp.74-78, 2007.
14. Karimian, A., and Kalantar, M., “Structural, Magnetic and Acetone Sensing Properties of Barium- Calcium Hexaferrite Synthesized by Sol-Gel Auto Combustion Method”, Journal of Advanced Materials in Engineering, Vol. 39, No. 1, pp. 13-27, 2020.
15. Küpferling, M., Grössinger, R., Pieper, M. W., Wiesinger, G., Michor, H., Ritter, C., and Kubel, F., “Structural Phase Transition and Magnetic Anisotropy of La-Substituted M-Type Sr Hexaferrite”, Physical Review B, Vol. 73, No. 10, pp. 635-645, 2017.
16. Manafi, S., Salehi, M., and Badie, H., “Comparative Assessment the Magnetic Properties of Barium Hexaferrite Doped with Paramagnetic and Diamagnetic Cations”, Advanced Processes in Materials Engineering, Vol. 11, No. 2. pp. 57-64, 2017.
17. Shannon, R. D., “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, Vol. 32, No. 5, pp. 751-767, 1976.
18. Kaur, P., Chawla, S. K., Narang, S. B., and Pubby, K., “Effect of Cu-Co-Zr Doping on the Properties of Strontium Hexaferrites Synthesized by Sol-Gel Auto-Combustion Method”, Journal of Superconductivity and Novel Magnetism, Vol. 30, No. 10, pp. 635-645, 2017.
19. Teh, G. B., Wong, Y. C., and Tilley, R. D., “Effect of Annealing Temperature on the Structural, Photoluminescence and Magnetic Properties of Sol-Gel Derived Magnetoplumbite-type (M-type) Hexagonal Strontium Ferrite”, Journal of Magnetism and Magnetic Materials, Vol. 323, No. 14, p. 144408, 2006.
20. Neupane, D., Wang, L., Adhikari, H., Alam, J., and Mishra, S. R., “Synthesis and Characterization of Co-Doped SrFe12−x(DyAl)xO19 Hexaferrite”, Journal of Alloys and Compounds, Vol. 701, No. 12, pp. 138-146, 2017.
21. Wu, X., Ding, Z., Song, N., Li, L., and Wang, W., “Effect of the Rare-Earth Substitution on the Structural, Magnetic and Adsorption Properties in Cobalt Ferrite Nanoparticles”, Ceramics International, Vol. 42, No. 3, pp. 4246-4255, 2016.
22. Sözeri, H., Küçük, İ., and Özkan, H., “Improvement in Magnetic Properties of La substituted BaFe 12O19 Particles Prepared with an Unusually Low Fe/Ba Molar Ratio”, Journal of Magnetism and Magnetic Materials, Vol. 323, No. 13, pp. 1799-1804, 2011.
23. Gorter, E. W. “Ionic Distribution Deduced from the G-factor of a Ferrimagnetic Spinel: Ti4+ in Fourfold Co-Ordination”, Nature, Vol. 173, No. 1, pp. 123-124, 1954.

ارتقاء امنیت وب با وف ایرانی