ساخت و بررسی سلول خورشیدی پروسکایتی بر پایه لایه انتقال ‌دهنده حفره نیکل اکسید و لایه محافظ میانی فولرین

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

به‌دلیل افزایش نیاز بشر به منابع انرژی پاک، فناوری سلول‌های خورشیدی با سرعت زیادی در حال گسترش است. از جمله مهم‌ترین چالش‌ها در ساخت سلول‌های خورشیدی پروسکایت، عدم وجود یک ماده انتقال‌ دهنده مؤثر حفره با پایداری و قیمتی مناسب است. نیمه‌هادی‌های نوع p غیرآلی مانند نیکل اکسید در مقایسه با انتقال‌ دهنده‌های حفره آلی از نظر قیمتی بسیار مقرون به‌صرفه هستند. علاوه بر این، ویژگی‌هایی از قبیل گاف انرژی پهن، رسانندگی بالا، پایداری و مقاومت در برابر رطوبت و فرایند ساخت بر پایه محلول، این انتقال‌ دهنده حفره‌ غیرآلی نانوساختار را به‌عنوان گزینه مناسبی برای جایگزینی مواد آلی تبدیل کرده است. هدف از انجام پژوهش حاضر ارزیابی مشخصات و مکانیزم نیکل اکسید به‌عنوان انتقال‌ دهنده حفره در ساختار سلول خورشیدی پروسکایتی نانوساختار به‌صورت معکوس و با استفاده از لایه محافظ میانی فولرین است. برای سلول‌های خورشیدی با این ساختار فاکتور پرشوندگی حدود 71 درصد و چگالی جریان 21/5 میلی‌آمپر بر سانتی‌متر مربع و ولتاژ مدار باز 1000 میلی‌ولت و بازده 15/2 درصد به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

FABRICATION AND INVESTIGATION OF PEROVSKITE SOLAR CELL BASED ON NICKEL OXIDE HOLE TRANSPORT LAYER AND FULLERENE INTERLAYER

نویسندگان [English]

  • Z. Rezay Marand
  • A. Kermanpur
  • F. Karimzadeh
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

Increased demand for clean energy sources, solar cell technology is expanding rapidly. One of the most critical challenges in constructing perovskite solar cells is the lack of an effective hole transport layer with stability and reasonable price. Inorganic p-type semiconductors such as nickel oxide are very cost-effective compared to organic ones. Features such as wide energy gap, high conductivity, stability and resistance to moisture, and solution-based manufacturing process, make the nanostructured inorganic hole transport layer a viable alternative to organic materials. The purpose of this project was to evaluate the characteristics and mechanism of nickel oxide as a hole transport material and fullerene as an interlayer in the structure of inverted nanostructured perovskite solar cells. These solar cells obtained a fill factor of about 71%, a current density of 21.5 mA/cm2, an open-circuit voltage of 1000 mV, and an efficiency of 15.2%.

کلیدواژه‌ها [English]

  • Perovskite Solar Cells
  • Hole Transport Material
  • Nickle Oxide
  • Fullerene
1. Yang, W. S., Park, B. -W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., and Seok, S., “Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells”, Science, Vol. 356, No. 6345, pp. 1376-1379, 2017.
2. Ren, X., Yang, D., Yang, Z., Feng, J., Zhu, X., Niu, J., Liu, Y., Zhao, W., and Liu, S. F., “Solution-Processed Nb: SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells”, ACS Applied Materials & Interfaces, Vol. 9, No. 3, pp. 2421-2429, 2017.
3. Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., and Greenough, R., “Perovskite Solar Cells: An Integrated Hybrid Lifecycle Assessment and Review in Comparison with other Photovoltaic Technologies”, Renewable and Sustainable Energy Reviews, Vol. 80, pp. 1321-1344, 2017.
4. Werner, J., Weng, C. -H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., Niesen, B., and Ballif, C., “Efficient Monolithic Perovskite/Silicon Tandem Solar Cell With Cell Area> 1 cm2”, The Journal of Physical Chemistry Letters, Vol. 7, No. 1, pp. 161-166, 2015.
5. Yin, X., Chen, P., Que, M., Xing, Y., Que, W., Niu, C., and Shao, J., “Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts”, ACS Nano, Vol. 10, No. 3, pp. 3630-3636, 2016.
6. Rohatgi, A., Zhu, K., Tong, J., Kim, D. H., Reichmanis, E., Rounsaville, B., Prakash, V., and Ok, Y. -W., “26.7% Efficient 4-Terminal Perovskite-Silicon Tandem Solar Cell Composed of A High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell”, IEEE Journal of Photovoltaics, Vol. 10, No. 2, pp. 417-422, 2020.
7. Wang, C., Zhang, J., Duan, J., Gong, L., Wu, J., Jiang, L., Zhou, C., Xie, H., Gao, Y., He, H., Lu, J., Fang, Zh., and Lu, B., “All-Inorganic, Hole-Transporting-Layer-Free, Carbon-Based CsPbIBr2 Planar Perovskite Solar Cells by a Two-Step Temperature-Control Annealing Process”, Materials Science in Semiconductor Processing, Vol. 108, p. 104870, 2020.
8. Chandrasekhar, P. S., Dubey, A., and Qiao, Q., “High Efficiency Perovskite Solar Cells Using Nitrogen-Doped Graphene/ZnO Nanorod Composite as an Electron Transport Layer”, Solar Energy, Vol. 197, pp. 78-83, 2020.
9. Anaraki, E. H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Grätzel, M., Hagfeldt, A., Correa, J. P., “Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-Processed Tin Oxide”, Energy & Environmental Science, Vol. 9, No. 10, pp. 3128-3134, 2016.
10. Leijtens, T., Giovenzana, T., Habisreutinger, S. N., Tinkham, J. S., Noel, N. K., Kamino, B. A., Sadoughi, G., Sellinger, A., and Snaith, H. J., “Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells”, ACS Applied Materials & Interfaces, Vol. 8, No. 9, pp. 5981-5989, 2016.
11. Sanchez, R. S., and Mas-Marza, E., “Light-Induced Effects on Spiro-OMeTAD Films and Hybrid Lead Halide Perovskite Solar Cells”, Solar Energy Materials and Solar Cells, Vol. 158, pp. 189-194, 2016.
12. Park, J. H., Seo, J., Park, S., Shin, S. S., Kim, Y. C., Jeon, N. J., Shin, H., Ahn, T. K., Noh, J. H., Yoon, S. Ch., Hwang, Ch. S., and Seoke, S., “Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured P‐Type NiO Electrode Formed by A Pulsed Laser Deposition”, Advanced Materials, Vol. 27, No. 27, pp. 4013-4019, 2015.
13. Corani, A., Li, M. -H., Shen, P. -S., Chen, P., Guo, T. -F., El Nahhas, A., Zheng, K., Yartsev, A., Sundstrom, V., and Ponseca, C. S., “Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as P-Type Contact Electrode”, The Journal of Physical Chemistry Letters, Vol. 7, No. 7, pp. 1096-1101, 2016.
14. Chen, W., Wu, Y., Liu, J., Qin, C., Yang, X., Islam, A., Cheng, Y. -B., and Han, L., “Hybrid Interfacial Layer Leads to Solid Performance Improvement of Inverted Perovskite Solar Cells”, Energy & Environmental Science, Vol. 8, No. 2, pp. 629-640, 2015.
15. Liu, D., Wang, Q., Traverse, C. J., Yang, C., Young, M., Kuttipillai, P. S., Lunt, S. Y., Hamann, T. W., and Lunt, R. R., “Impact of Ultrathin C60 on Perovskite Photovoltaic Devices”, ACS Nano, Vol. 12, No. 1, pp. 876-883, 2018.
16. Rezay Marand, Z., Helmi Rashid Farimani, M., and Shahtahmasebi, N., “Study of Magnetic and Structural and Optical Properties of Zn Doped Fe3O4 Nanoparticles Synthesized by Co-Precipitation Method for Biomedical Application”, Nanomedicine Journal, Vol. 1, No. 4, pp. 238-247, 2014.
17. Kaneko, R., Chowdhury, T. H., Wu, G., Kayesh, M. E., Kazaoui, S., Sugawa, K., Lee, J. -J., Noda, T., Islam, A., and Otsuki, J., “Cobalt-Doped Nickel Oxide Nanoparticles as Efficient Hole Transport Materials for Low-Temperature Processed Perovskite Solar Cells”, Solar Energy, Vol. 181, pp. 243-250, 2019.
18. Saliba, M., Correa-Baena, J. -P., Wolff, C. M., Stolterfoht, M., Phung, N., Albrecht, S., Neher, D., and Abate, A., “How to Make Over 20% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures”, Chemistry of Materials, Vol. 30, No. 13, pp. 4193-4201, 2018.
19. Méndez, P. F., Muhammed, S. K. M., Barea, E. M., Masi, S., and Mora-Seró, I., “Analysis of the UV-Ozone‐Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis”, Solar RRL, Vol. 3, No. 9, p. 1900191, 2019.
20. Fahrenbruch, A., and Bube, R., Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion, Elsevier, 2012.
21. Smestad, G. P., Optoelectronics of Solar Cells, SPIE Press, 2002.
22. Sanchez, R. S., Gonzalez-Pedro, V., Lee, J. -W., Park, N. -G., Kang, Y. S., Mora-Sero, I., and Bisquert, J., “Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis”, The Journal of Physical Chemistry Letters, Vol. 5, No. 13, pp. 2357-2363, 2014.
23. Natu, G., Hasin, P., Huang, Z., Ji, Z., He, M., and Wu, Y., “Valence Band-Edge Engineering of Nickel Oxide Nanoparticles Via Cobalt Doping for Application in P-Type Dye-Sensitized Solar Cells”, ACS Applied Materials & Interfaces, Vol. 4, No. 11, pp. 5922-5929, 2012.
24. Nie, W., Tsai, H., Asadpour, R., Blancon, J. -C., Neukirch, A. J., Gupta, G., Crochet, J. J., Chhowalla, M., Tretiak, S., Alam, M., Wang, H. L., and Mohite, A. D., “High-Efficiency Solution-Processed Perovskite Solar Cells With Millimeter-Scale Grains”, Science, Vol. 347, No. 6221, pp. 522-525, 2015.
25. Kim, J. H., Liang, P., Williams, S. T., Cho, N., Chueh, C., Glaz, M. S., Ginger, D. S., and Jen, A. K., “High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on A Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer”, Advanced Materials, Vol. 27, No. 4, pp. 695-701, 2015.
26. Stolterfoht, M., Le Corre, V. M., Feuerstein, M., Caprioglio, P., Koster, L. J. A., and Neher, D., “Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells”, ACS Energy Letters, Vol. 4, No. 12, pp. 2887-2892, 2019.
27. Xia, X., Jiang, Y., Wan, Q., Wang, X., Wang, L., and Li, F., “Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells”, ACS Applied Materials & Interfaces, Vol. 10, No. 51, pp. 44501-44510, 2018.
28. Lee, P. H., Li, B. T., Lee, C. F., Huang, Z. H., Huang, Y. C., and Su, W. F., “High-Efficiency Perovskite Solar Cell Using Cobalt Doped Nickel Oxide Hole Transport Layer Fabricated by NIR Process”, Solar Energy Materials and Solar Cells, Vol. 208, p. 110352, 2020.
29. Tobias, A., Somayeh, M., Fabian, S., et al., “Photovoltaic Devices: Electron-Beam-Evaporated Nickel Oxide Hole Transport Layers for Perovskite-Based Photovoltaics” , Advanced Energy Materials, Vol. 9, p. 1970035, 2019.

ارتقاء امنیت وب با وف ایرانی