ساخت و مشخصه‌یابی ریزساختار و خواص مکانیکی نانوکامپوزیت بر پایه آلیاژ NiCrAlY تقویت‌ شده با ذرات Si3N4 به روش تف‌جوشی پلاسمای ‌جرقه‌ای

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی مالک‌اشتر، اصفهان، ایران

چکیده

در پژوهش حاضر، تأثیر افزودن Si3N4 بر ریزساختار، سختی و ضریب اصطکاک و نرخ سایش آلیاژ NiCrAlY بررسی‌ شده است. خصوصیات ساختاری و مکانیکی نمونه‌های تولیدی توسط میکروسکوپ الکترونی روبشی، دستگاه پراش‌سنج پرتو ایکس، دستگاه سختی‌سنجی ویکرز ارزیابی شد. ابتدا پودر  Si3N4 به مقادیر 1، 3 و 5 درصد وزنی با پودر NiCrAlY به مدت 2 ساعت در آسیاب مکانیکی با یکدیگر مخلوط شدند؛ در ادامه مخلوط‌های پودری در دمای 1100 درجه سانتی‌گراد تحت عملیات تف‌جوشی پلاسمای‌جرقه‌ای (SPS)، قرار گرفتند. نتایج حاصل از الگوی پراش‌ پرتو ایکس، نشان می‌دهد نمونه‌های تولیدی از دو فاز محلول جامد Ni(Cr)-γو ترکیبات بین فلزی NiAl-β تشکیل ‌شده است. نتایج سختی‌سنجی نشان می‌دهد که با افزودن 1 درصد Si3N4 به NiCrAlY، سختی نمونه از 418 به 614 ویکرز افزایش می‌یابد. همچنین، نمونه مقاومت به سایش (mg/m)10-5×1/42 از خود نشان می‌دهد؛ اما با افزایش درصد وزنی Si3N4 در نمونه 1 به 5 درصد وزنی، سختی از 614 به 543 ویکرز کاهش می‌یابد. 

کلیدواژه‌ها


عنوان مقاله [English]

FABRICATION AND CHARACTERIZATION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NANOCOMPOSITES BASED ON NICRALY ALLOY REINFORCED WITH SI3N4 PARTICLES BY SPARK PLASMA SINTERING METHOD

نویسندگان [English]

  • R. Zarei
  • E. Mohammadsharifi
  • M. R. Loghman
  • M. Ramazani
  • Kh. Zamani
Department of Materials Engineering, Malek Ashtar University of Technology, P.O. Box, 83145/115, Shahin Shahr, Isfahan, Iran
چکیده [English]

The present research has examined the effect of adding Si3N4 on the mechanical and structural properties of NiCrAlY alloy. The structural and mechanical properties of the manufactured samples were characterized by SEM, XRD,  micro-hardness evaluation and pin on disk wear test. Various concentrations of Si3N4 powder (1, 3, and 5 wt.%) were mixed with NiCrAlY powder using a mechanical ball mill. Next, the mixtures were sintered at 1100 °C using the spark plasma sintering (SPS) technique. The XRD patterns indicated that the samples were composed of two phases of solid solution γ-Ni(Cr) and intermetallic compounds β-NiAl. The results of micro-hardness measurements showed that adding 1% Si3N4 to NiCrAlY enhanced the hardness from 418 to 614 HV. However, with an increase in the Si3N4 content from 1 to 5 wt%, the hardness diminished from 614 to 543 HV, and by Adding Si3N4 to the NiCrAlY, its tribological properties were significantly improved.

کلیدواژه‌ها [English]

  • NiCrAlY nanocomposite
  • Spark plasma sintering
  • Si3N4
1. Torralba. J.d., Costa. C., Velasco. F., “P/M Aluminum Matrix Composites: A overview”, Journal Of Materials Processing Technology, Vol. 133, pp. 203-206, 2003.
2. Yang. L., Chen. M., Wang. J., Qiao. Y., Guo. P., Zhu. S., Wang. F., “Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation”, Journal of Materials Science & Technology, Vol. 45, pp. 49-58, 2020.
3. Nishida. Y., Introduction to Metal Matrix Composites, Fabrication and Recycling, Springer Science & Business Media, Japan, 2013.
4. Moskal. G., Niemiec. D., Chmiela. B., Kałamarz. P., Durejko. T., Ziętala. M., Czujko. T., “Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel”, Surface and Coatings Technology, Vol. 387, pp. 125317-125328, 2020.
5. Shi. P., Wang. W., Wan. S., Gao. Q., Sun. H., Feng. X., Yi. G., Xie. E., Wang. Q., “Tribological performance and high temperature oxidation behaviour of thermal sprayed Ni-and NiCrAlY-based composite coatings”, Surface and Coatings Technology, Vol. 405, pp. 126615-126628, 2021.
6. Mévrel. R., “State of the art on High-temperature corrosion-resistant Coatings ”, Journal Of Materials Science And Engineering, Vol. 120, pp. 13-24, 1989.
7. Lakshmi. K., Sogalad. I., Basavarajappa. S., Raghavendra. C, “Optimization of erosive wear parameters on NiCrAlY based nano composite coating by RSM”, Materials Today: Proceedings, Vol. 46, pp. 763-766, 2021.
8. Takahashi. R., Assis. J., Neto.F., Mello. A., Reis. D., “Sintering Study of NiCrAlY ”, Journal Of Materials Science And Engineering, Vol. 899, pp. 478-482, 2017.
9. Ratel. N., Monceau. D., Estourn. C., “Reactivity and Microstructure Evolution of a CoNiCrAlY/talc Cermet Prepared by Spark plasma Sintering ”, Journal Of Surface And Coatings Technology, Vol. 205, pp. 1183-1188, 2010.
10. Cao. S., Shufang. R., Jiansong. Z., Yu. Y., Wang. L., Guo. C., Xin. B., “Influence of Composition and Microstructure on the Tribological Property of SPS Sintered MCrAlY alloys at Elevated Temperatures ”, Journal Of Alloys and Compounds, Vol. 740, pp. 790-800, 2018.
11. Liu. J.K., Liang. C.X., “Microstructure Characterization and Mechanical Properties of bulk Nanocrystalline Aluminium Prepared by SPS and follow by high Temperature Extruded Ttechniques ”, Journal Of Materials Letters. Vol. 206, pp. 95-99, 2017.
12. Mai. T.T., Ha. C.N., Thuc. H.H., “Preparation of Graphene nano-layer by Chemical Graphitization of Graphite oxide from Exfoliation and Preliminary Reduction, Fullerenes”, Journal Of Carbon Nanostruct, Vol. 23, pp. 742-749, 2015.
13. Jhansi Lakshmi. K., Irappa. S., Raghavendra. C., Basavarajappa. S, “High temperature erosive behaviour of plasma sprayed NiCrAlY/B4C/Cenosphere coating on MDN 321 turbine steel”, Transactions of the IMF, Vol.1, pp. 1-8, 2022.
14. Peng. H., “Spark Plasma Sintering of Si3N4-Based Ceramics-Sintering Mechanism-Tailoring Microstructure-Evaluating Properties, Doctoral Dissertation Department of Inorganic Chemistry ”, Stockholm University, 2004.
15. Mohamed., F. Xun Y., “Correlations Between the Minimum Grain Size Produced By Milling and Material Parameters ”, Journal Of Materials Science and Engineering: A, Vol. 354, pp. 133-139, 2003.
16. Cao. S., Ren. S., Zhou. J., “Influence of Composition and Microstructure on The Tribological Property of SPS Sintered MCrAlY Alloys at Elevated Temperatures ”, Journal Of Alloys and Compounds, Vol, 740, pp. 790-800, 2018.
17. Takahashi. R., Assis. J., Neto. FP., Mello. AM., Reis. DAP., “Sintering Study of NiCrAlY ”, Journal Of Materials Science And Egineering, Vol. 899, pp. 478-482, 2017.
18. Esmaeeli. Z., Loghman. M., Ramezani. M., “Preparation Of Agglomerate Nanopowder, Sintering And Evaluate The Properties Of NiCrAlY-Nano Si3N4-Gr Nanocomposite ”, Journal Of Alloys and Compounds, Vol. 847, pp. 155802-155813, 2020.
19. Lakshmi. KP., Irappa Sogalad., Basavarajappa. S., “Study on dry Sliding Wear Behaviour of NiCrAlY/B4C/cenosphere Composite Coating by RSM method ”, Journal Of Materials Today: Proceedings, Vol. 39 pp. 758-763, 2021.
20. Sharmaa. P., Satpal Sharma. B., Khanduja. D., “Production and Some Properties of Si3N4 Reinforced Aluminium alloy Composites ”, Journal Of Asian Ceramic Societies, Vol. 3 pp. 352–359, 2015.
21. Suryanarayana. C., “Mechanical alloying and Milling ”, Journal Of Mater Science, Vol. 46, pp. 1-184, 2001.
22. Mhadhbi., M. Khitouni., M. Azabou., M. Kolsi., “A Characterization of Al and Fe Nanosized Powders Synthesized By High Energy Mechanical Milling ”, Journal Of Materials Characterization, Vol. 59, pp. 944-950, 2007.
23. El-Eskandarany. M., “Mechanical Alloying for fabrication of Advanced Engineering
Materials ”, Journal Of Noyes Publication, Al Azhar University, USA, 2001.
24. Bolelli. G., Candeli. A., “Tribology of NiCrAlY+Al2O3 Composite Coatings by Plasma Sprayingwith hybrid Feeding of Dry Powder+suspension ”, Journal Of Wear, Vol. 344, pp. 69–85, 2015.
25. Li, B., Gao. Y., Jia. J., Han. M., Guo. H., Wang. W., “Influence of Heat Treatments on the Microstrure as Well as Mechanical and Ttribological Properties of NiCrAlY-Mo-Ag Coatings ”, Journal Of Alloys and Compounds, Vol, 686, pp. 503-51, 2016.

تحت نظارت وف ایرانی