بررسی اثر زمان آسیا‌کاری بر تغییرات ریزساختاری و آنالیز فازی پودر Mg-3Zn تولید شده به روش آسیا‌کاری مکانیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 آذربایجان غربی، ارومیه، دانشگاه ارومیه، دانشکده فنی و مهندسی، گروه مهندسی مواد

2 آذربایجان شرقی، تبریز، دانشکده فنی و مهندسی، گروه مهندسی شیمی، دانشگاه شهید مدنی

چکیده

در این تحقیق پودر Mg-3Zn با استفاده از آسیاب سیاره‌ای تحت اتمسفر آرگون تولید شد. هدف از این پژوهش بررسی اثر زمان آسیاکاری (2/5، 5، 7/5 و 10 ساعت) بر روی تغییرات ریز ساختاری و مشخصات بلورشناسی Mg-3Zn است. برای بررسی فازهای ایجاد شده در طی زمان‌های مختلف آسیا‌کاری از آنالیز پراش پرتو ایکس استفاده شد. همچنین مورفولوژی پودرهای سنتز شده با استفاده از میکروسکوپ الکترونی روبشی مورد بررسی قرار گرفت. مشخصه‌های بلوری پودرهای تولید شده کامپوزیتی مانند اندازه بلورک، کرنش و پارامتر شبکه با استفاده از روش‌های ویلیامسون-هال و روش ریتولد به‌طور کامل ارزیابی شد. اثر زمان آسیا‌کاری بر روی خواص مکانیکی پودرها با استفاده از آزمون میکروسختی مورد بررسی قرار گرفت. نتایج نشان داد با افزایش زمان آسیا‌کاری اندازه‌ بلورک، پارامتر شبکه و سختی پودر Mg-Zn  کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the Effect of Milling Time on the Microstructural Changes and Phase Analysis of Mg-3Zn Powder Synthesized by Mechanical Alloying

نویسندگان [English]

  • M. Yahyazameh 1
  • M. Kavanlouei 1
  • M. Shahbaz 1
  • Y. Beygi-Khosrowshahi 2
1 Department of Materials Science and Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
2 Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

In this study, Mg-3Zn nanocomposite powder was produced using planetary ball mill under argon atmosphere. The aim of this work was to study the effect of milling time (2.5, 5, 7.5, and 10 h) on the crystallographic features and microstructure of Mg-3Zn. X-Ray diffraction (XRD) was used to investigate phase analysis of various milled powders. Also, the morphology of different samples were observed by scanning electron microscopy (SEM). The crystallographic features of the composite powders such as crystallite size, strain, and lattice parameter were thoroughly characterized by Rietveld and Williamson-Hall methods. The effect of milling time on the mechanical properties of the powders was evaluated using microhardness test. The results declared that crystallite size, lattice parameter, and microhardness of Mg-Zn powder decreased with increasing milling time.

کلیدواژه‌ها [English]

  • Mechanical alloying
  • Mg-3Zn
  • Powder metallurgy
  • Planetary ball mill
  1. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable materials and metallic implants—a review. Journal of functional biomaterials 2017;8(4):44.
  2. Maurus PB, Kaeding CC. Bioabsorbable implant material review. Operative Techniques in Sports Medicine 2004;12(3):158-60.
  3. Li X, Liu X, Wu S, Yeung KW, Zheng Y, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta biomaterialia 2016;45:2-30.
  4. Ramkumar T, Selvakumar M, Vasanthsankar R, Sathishkumar AS, Narayanasamy P, Girija G. Rietveld refinement of powder X-ray diffraction, microstructural and mechanical studies of magnesium matrix composites processed by high energy ball milling. Journal of magnesium and alloys 2018;6(4):390-8.
  5. Deng Y, Yin Z, Zhao K, Duan J, He Z. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. Journal of Alloys and Compounds 2012;530:71-80.
  6. Singh R, Bathaei MJ, Istif E, Beker L. A review of bioresorbable implantable medical devices: Materials, fabrication, and implementation. Advanced Healthcare Materials 2020;9(18):2000790.
  7. Zheng YF, Gu XN, Witte F. Biodegradable metals. Materials Science and Engineering: R: Reports 2014;77:1-34.
  8. Xing F, Li S, Yin D, Xie J, Rommens PM, Xiang Z, Liu M, Ritz U. Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. Journal of Magnesium and Alloys 2022;10(6):1428-56.
  9. Atrens A, Shi Z, Mehreen SU, Johnston S, Song GL, Chen X, Pan F. Review of Mg alloy corrosion rates. Journal of Magnesium and Alloys 2020;8(4):989-98.
  10. Liu C, Xin Y, Tian X, Chu PK. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. Journal of Materials Research 2007;22(7):1806-14.
  11. Li N, Zheng Y. Novel magnesium alloys developed for biomedical application: a review. Journal of Materials Science & Technology 2013;29(6):489-502.
  12. Loukil N. Alloying elements of magnesium alloys: a literature review. Magnesium alloys structure and properties 2021;17:58-78.
  13. Qian X, Dong Z, Jiang B, Lei B, Yang H, He C, Liu L, Wang C, Yuan M, Yang H, Yang B. Influence of alloying element segregation at grain boundary on the microstructure and mechanical properties of Mg-Zn Materials & Design 2022;224:111322.
  14. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009;30(4):484-98.
  15. Maleki-Ghaleh H, Shakeri MS, Dargahi Z, Kavanlouei M, Garabagh HK, Moradpur-Tari E, Yourdkhani A, Fallah A, Zarrabi A, Koç B, Siadati MH. Characterization and optical properties of mechanochemically synthesized molybdenum-doped rutile nanoparticles and their electronic structure studies by density functional theory. Materials Today Chemistry 2022;24:100820.
  16. Akhgar BN, Kavanlouei M, Kazemi H, Ghavidel S, Dardman S. Effect of synthesis routes on the microstructural properties of nano zero-valent metals of Fe and Cu synthesized from the industrial copper solvent extraction process. Materials Chemistry and Physics 2023;302:127704.
  17. Mehr ME, Maleki-Ghaleh H, Yarahmadi M, Kavanlouei M, Siadati MH. Synthesis and characterization of photocatalytic zinc oxide/titanium oxide (core/shell) nanocomposites. Journal of Alloys and Compounds 2021;882:160777.
  18. Suryanarayana C, Ivanov E, Boldyrev VV. The science and technology of mechanical alloying. Materials Science and Engineering: A 2001;304:151-8.
  19. Salleh EM, Ramakrishnan S, Hussain Z. Synthesis of biodegradable Mg-Zn alloy by mechanical alloying: effect of milling time. Procedia Chemistry 2016;19:525-30.
  20. Salleh EM, Zuhailawati H, Ramakrishnan S, Gepreel MA. A statistical prediction of density and hardness of biodegradable mechanically alloyed Mg–Zn alloy using fractional factorial design. Journal of Alloys and Compounds 2015;644:476-84.
  21. Sun Y, Zhang B, Wang Y, Geng L, Jiao X. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Materials & Design 2012;34:58-64.
  22. Gu XN, Li N, Zheng YF, Ruan L. In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Materials Science and Engineering: B 2011;176(20):1778-84.
  23. Razzaghi M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, Ghayour H. In Vitro Degradation, Antibacterial Activity and Cytotoxicity of Mg-3Zn-xAg Nanocomposites Synthesized by Mechanical Alloying for Implant Applications. Journal of Materials Engineering and Performance 2019;28(3): 1441-55.
  24. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta metallurgica 1953;1(1):22-31.

تحت نظارت وف ایرانی