کاربرد کاتالیزگری کمپلکس مس تهیه شده با لیگاندهای پینسر NNN تثبیت شده بر روی نانوذره‌های سیلیکا به ‌وسیله‌ نسل اول دندریمرهای پلی‌آمیدوآمین

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده شیمی، دانشگاه صنعتی اصفهان، اصفهان، ایران، 83111-84156

چکیده

در این پژوهش یک سیستم کاتالیزگری با استفاده از کمپلکس مس تثبیت‌شده بر روی نانوذره‌های سیلیکا، به‌‌عنوان نانوکاتالیزگری با کارایی بالا برای بهبود واکنش‌های کاتالیزشده کلیک استفاده شد. در ابتدا دندریمرهای پلی آمیدوآمین با استفاده از متیل آکریلات و اتیلن دی‌آمین به روش سنتز واگرا بر روی بستر آمینوپروپیل پیوند شده به سیلیکا سنتز شدند. سپس، دندریمرهای پیوند شده به سیلیکای اصلاح شده به‌‌عنوان بستر هیبریدی آلی- معدنی برای تثبیت لیگاند پینسر NNN استفاده شد. لیگاند پینسر به‌وسیله‌ واکنش بستر عامل‌دار شده با سیانوریک کلرید و سپس واکنش آن 2-آمینوپیریدین تشکیل شد. در ادامه، از طریق واکنش مس (II) کلرید با لیگاند تثبیت‌شده، کمپلکس مس بر روی این ترکیب تشکیل شد. ترکیب تهیه شده به‌‌عنوان کاتالیزگر در واکنش‌های کلیک حلقه‌زایی آزید-آلکین مورد استفاده قرار گرفت. داده‌های به‌دست آمده نشان داد که در شرایط بهینه شده: محلول آب-اﺗﺎﻧﻮل ﺑﺎ ﻧﺴﺒﺖ ١:١، ﻣﻘﺪار 0/5 درصد ﻣﻮلی کاتالیزگر، دﻣﺎی 60 درﺟﻪ سلسیوس و زمان 40 دقیقه، بازده واکنش 97 درصد است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Catalytic Application of Copper Complex Prepared by a NNN Pincer Ligand Supported on Silica Nanoparticles Using first Generation of Polyamidoamine Dendrimers

نویسندگان [English]

  • G. Mohammadnezhad
  • M. Abedi
Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
چکیده [English]

In this research, a catalytic system using a copper complex supported on silica nanoparticles was used as a nanocatalyst with high efficiency to enhance catalytic click reactions. At first, polyamidoamine dendrimers were synthesized using methyl acrylate and ethylene diamine by divergent synthesis method on aminopropyl grafted silica support. Then, modified silica-supported dendrimers were used as an organic-inorganic hybrid substrate to immobilize the NNN pincer ligand. The pincer ligand was formed by reacting the functionalized support with cyanuric chloride and then reacting with 2-aminopyridine. Next, through the reaction of copper chloride with the stabilized ligand, the copper (II) complex was formed on this compound. The prepared compound was used as a catalyst in azide-alkyne cycloaddition click reactions. The obtained data showed that in the optimized conditions: water-ethanol solution (1:1), catalyst mole percentage of 0.5, 60 °C, and time of 40 min, the reaction efficiency was obtained to be 97%.

کلیدواژه‌ها [English]

  • Polyamidoamine
  • Pincer
  • Dendrimer
  • Complex
  • Click reaction
  1. Tahmasebi E, Yamini Y, Moradi M, Esrafili A. Polythiophene-coated Fe3O4 superparamagnetic nanocomposite: synthesis and application as a new sorbent for solid-phase extraction. Anal Chim Acta 2013; 770: 68-74. https://doi.org/10.1016/j.aca.2013. 01.043
  2. van Houten JA. Century of chemical dynamics traced through the nobel prizes. 1992: Rudolph A. Marcus. J Chem Educ 2002;79:1055. https://doi.org/10.1021/ ed079p1055
  3. a) Fiedor L, Kania A, Myśliwa-Kurdziel B, Orzeł Ł, Stochel G. Understanding chlorophylls: central magnesium ion and phytyl as structural determinants. Biochim Biophys Acta Bioenerg 2008;1777,1491-1500. https://doi.org/10.1016/j.bbabio.2008.09.005 b) Pauling, L, Coryell, CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci 1936;22:210-216. https://doi.org/10.1073/pnas.22.4.210
  4. Moulton CJ, Shaw BL. Transition metal–carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-t-butylphosphino)methyl]phenyl. J Chem Soc Dalton Trans 1976;11:1020-4. https://doi.org/10.1039/DT9760001020
  5. van Koten G. Tuning the reactivity of metals held in a rigid ligand environment. Pure Appl Chem 1989; 61: 1681-1694. https://doi.org/10.1351/pac198961101681
  6. Peris E, Crabtree RH. Key factors in pincer ligand design. Chem Soc Rev 2018;47:1959-68. https:// doi.org/10.1039/C7CS00693D
  7. Hong SY, Kwak J, Chang S. Rhodium-catalyzed selective C–H functionalization of NNN tridentate chelating compounds via a rollover pathway. Chem Commun 2016;52(15):3159-62. https://doi.org/10. 1039/C5CC09960A
  8. Kjellgren J, Employment of palladium pincer complex catalysts and Lewis acids for synthesis and transformation of organometallic compounds. 2005 (Doctoral dissertation, Institutionen för organisk kemi).
  9. Huff CA, Sanford MS. Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex. ACS Catalysis 2013; 4; 3(10): 2412-6. https://doi.org/10. 1021/cs400609u
  10. Kumar A, Goldman AS. Recent advances in alkane dehydrogenation catalyzed by pincer complexes. The Privileged Pincer-Metal Platform: Coordination Chemistry & Applications. 2016:307-34. https://doi. org/10.1007/3418_2015_113
  11. Fogler E, Balaraman E, Ben-David Y, Leitus G, Shimon LJ, Milstein D. New CNN-type ruthenium pincer NHC complexes. Mild, efficient catalytic hydrogenation of esters. Organometallics. 2011; 30(14):3826-33. https://doi.org/10.1021/om200367j
  12. Churruca F, SanMartin R, Tellitu I, Domínguez E. PCP-Bis (phosphinite) pincer complexes: new homogeneous catalysts for α-arylation of ketones. Tetrahedron lett 2006;47(19):3233-7. https://doi.org/ 10.1016/j.tetlet.2006.03.040
  13. Esfandiari M, Havaei G, Zahiri S, Mohammadnezhad G. Pincer complex immobilization onto different supports: Strategies and applications. Coord Chem Rev 2022;472:214778. https://doi.org/10.1016/j.ccr. 2022.214778
  14. Bosman DA, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem rev 1999;99(7):1665-88. https://doi.org/10.1021/cr970069y
  15. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 2006;7(2):572-9. https://doi.org/10.1021/bm0506142
  16. de Jesus E, Flores JC. Dendrimers: Solutions for catalyst separation and recycling–a review. Ind Eng Chem Res 2008;47(21):7968-81. https://doi.org/10. 1021/ie800381d
  17. Zohreh N, Jahani M. NNN-pincer-copper complex immobilized on magnetic nanoparticles as a powerful hybrid catalyst for aerobic oxidative coupling and cycloaddition reactions in water. J Mol Catal A: Chem 2017;426:117-29. https://doi.org/10.1016/j. molcata.2016.11.007
  18. Zohreh N, Hosseini SH, Jahani M, Xaba MS, Meijboom R. Stabilization of Au NPs on symmetrical tridentate NNN-Pincer ligand grafted on magnetic support as water dispersible and recyclable catalyst for coupling reaction of terminal alkyne. J Catal 2017;356:255-68. https://doi.org/10.1016/j.jcat. 2017.10.021
  19. Hosseini SH, Zohreh N, Alipour S, Busuioc C, Negrea R. Gold nanoparticles stabilized on SBA-15 functionalized NNN-pincer ligand; highly effective catalyst for reduction of nitroarenes in aqueous medium. Catal Commun 2018;108:93-7. https://doi. org/10.1016/j.catcom.2018.01.002
  20. Mohammadnezhad G, Esfandiari M, Steiniger F. End-grafted Cu-NNN pincer complexes on PAMAM dendrimers-SiO2: synthesis and characterization. New J Chem 2020;44(35):15054-65. https://doi.org/ 10.1039/D0NJ02693J
  21. Huisgen R. 1,3‐dipolar cycloadditions. Past and future. Angew Chem, Int Ed Engl 1963;2(10):565-98. https://doi.org/10.1002/anie.196305651
  22. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 2002;114(14):2708-11. https://doi.org/10.1002/1521-3757(20020715) 114:14<2708::AID-ANGE2708>3.0.CO;2-0
  23. El-Sagheer AH, Brown T. Click chemistry with DNA. Chem Soc Rev 2010;39(4):1388-405. https://doi.org/10.1039/B901971P
  24. Vantikommu J, Palle S, Reddy PS, Ramanatham V, Khagga M, Pallapothula VR. Synthesis and cytotoxicity evaluation of novel 1, 4-disubstituted 1,2,3-triazoles via CuI catalysed 1,3-dipolar cycloaddition. Eur J Med Chem 2010;45(11):5044-50. https://doi.org/10.1016/j.ejmech.2010.08.012
  25. Buckle DR, Rockell CJ, Smith H, Spicer BA. Studies on 1,2,3-triazoles. 13.(Piperazinylalkoxy)-[1] benzopyrano [2, 3-d]-1,2,3-triazol-9 (1H)-ones with combined H1-antihistamine and mast cell stabilizing properties. J Med Chem 1986;29(11):2262-7. https://doi.org/10.1021/jm00161a022
  26. Genin MJ, Allwine DA, Anderson DJ, Barbachyn MR, Emmert DE, Garmon SA, Graber DR, Grega KC, Hester JB, Hutchinson DK, Morris J. Substituent effects on the antibacterial activity of nitrogen −carbon-linked (Azolylphenyl) oxazolidinones with expanded activity against the fastidious gram-negative organisms haemophilus influenzae and moraxella catarrhalis. J Med Chem 2000;43(5):953-70. https://doi.org/10. 1021/jm990373e
  27. Alvarez R, Velazquez S, San-Felix A, Aquaro S, Clercq ED, Perno CF, Karlsson A, Balzarini J, Camarasa MJ. 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-beta.-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole 2'', 2''-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J Med Chem 1994;37(24):4185-94. https://doi.org/10.1021/ jm00050a015
  28. Lv G, Mai W, Jin R, Gao L. Immobilization of dipyridyl complex to magnetic nanoparticle via click chemistry as a recyclable catalyst for Suzuki cross-coupling reactions. Synlett 2008;2008(09):1418-22. 10.1055/s-2008-1072597
  29. Schaetz A, Hager M, Reiser O. Cu (II)‐ Azabis(oxazoline)‐Complexes Immobilized on Superparamagnetic Magnetite@ Silica‐Nanoparticles: A Highly Selective and Recyclable Catalyst for the Kinetic Resolution of 1,2‐Diols. Adv Func Mater 2009; 19(13):2109-15. https://doi.org/10.1002/adfm.200801861
  30. Nasr-Esfahani M, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Mirkhani V, Tangestaninejad S, Amiri Rudbari H. Copper immobilized on nanosilica triazine dendrimer (Cu (II)-TD@nSiO2)-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles and bis-and tris-triazoles via a one-pot multicomponent click reaction. J Org Chem 2014;79(3):1437-43. https:// doi.org/10.1021/jo402170n
  31. Sardarian AR, Mohammadi F, Esmaeilpour M. Dendrimer-encapsulated copper (II) immobilized on Fe3O4@ SiO2 NPs: a robust recoverable catalyst for click synthesis of 1,2,3-triazole derivatives in water under mild conditions. Res Chem Intermed 2019;45:1437-1456. https://doi.org/10.1007/s11164-018-3672-x
  32. Banan A, Bayat A, Valizadeh H. Copper immobilized onto polymer‐coated magnetic nanoparticles as recoverable catalyst for ‘click’reaction. Appl Organomet Chem 2017;31(5):e3604. https://doi.org/ 10.1002/aoc.3604.

ارتقاء امنیت وب با وف ایرانی