An Investigation on the Effect of TiC Additive on the Microstructural and Mechanical Properties of Ultra-High Temperature ZrB2-SiC-Based Ceramic Composite by Multi-Step Spark Plasma Sintering Method

Document Type : Original Article

Authors

Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

This study investigates the fabrication and characterization of an ultra-high temperature ceramic composite based on ZrB2-20 vol. % SiC using the spark plasma sintering method with a multi-step technique. Sintering of ZrB2 poses challenges due to its covalent nature and high sintering temperature. Adding up to 20 vol. % SiC has shown significant improvement in the sintering process and mechanical properties of the ZrB2-based composite. Therefore, the effect of adding TiC in the range of 0 to 15 vol. % on the microstructural and mechanical properties of the composite was investigated at a temperature of 1800°C and a pressure of 30 MPa. The results indicated that the sintering process and particle bonding start at a temperature of 1600°C and continue up to 1800°C, with densification being controlled by grain boundary diffusion at this temperature. Adding up to 10 vol. % TiC to the ZrB2-SiC composite and sintering at 1800°C for 5 minutes resulted in the formation of (Zr,Ti)B2 and (Ti,Zr)C solid solutions in the matrix and reactions with surface oxides of ZrB2 powder such as ZrO2 and B2O3. These changes led to a 15% increase in relative density and improvements in mechanical properties, including hardness (14%), elastic modulus (12%), fracture strength (20%), and fracture toughness (8%). However, increasing the TiC content from 10 to 15 vol. % resulted in a noticeable decline in the mechanical properties and crystallite size of the composite.

Keywords

Main Subjects


  1. Magnuson M, Hultman L, Högberg H. Review of transition-metal diboride thin films. Vacuum. 2022; 196:110567. https://doi.org/10.1016/j.vacuum.2021. 110567

    1. Rueschhoff LM, Carney CM, Apostolov ZD, Cinibulk MK. Processing of fiber-reinforced ultra-high temperature ceramic composites: A review. Int J Ceram Eng Sci. 2020;2(1):22–37. https://doi.org/10. 1002/ces2.10033
    2. Guo SQ. Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc. 2009;29(6):995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
    3. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90(5):1347–64. https://doi.org/ 10.1002/ces2.10033.
    4. Istgaldi H, Shahedi Asl M, Shahi P, Nayebi B, Ahmadi Z. Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites. Ceram Int. 2020;46(3):2923–30. https://doi.org/10. 1016/j.ceramint.2019.09.287
    5. Hong CQ, Zhang XH, Li WJ, Han JC, Meng SH. A novel functionally graded material in the ZrB2-SiC and ZrO2 system by spark plasma sintering. Mater Sci Eng A. 2008;498(1–2):437–41. https://doi.org/ 10.1016/j.msea.2008.08.032
    6. Luning Zhang, Dušan A. Pejaković, Jochen Marschall MG. Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB 2 and ZrB 2 Ceramics´,. Am Ceram Soc. 2011;94(8):2562–70. https://doi.org/10.1111/j.1551-2916.2011.04411.x
    7. Purwar A, Mukherjee R, Ravikumar K, Ariharan S, Gopinath NK, Basu B. Development of ZrB2-SiC-Ti by multi stage spark plasma sintering at 1600°C. J Ceram Soc Japan. 2016;124(4):393–402. https://doi. org/10.2109/jcersj2.15260
    8. Ghafuri F, Ahmadian M, Emadi R, Zakeri M. Effects of SPS parameters on the densification and mechanical properties of TiB 2 -SiC composite. Ceram Int. 2019; 45(8):10550–7. https://doi.org/10.1016/j.ceramint.2019. 02.119
    9. Asl MS, Nayebi B, Ahmadi Z, Zamharir MJ, Shokouhimehr M. Effects of carbon additives on the properties of ZrB2–based composites: A review. Ceram Int. 2018;44(7):7334–48. https://doi.org/10. 1016/j.ceramint.2018.01.214
    10. Fattahi M, Azizian-Kalandaragh Y, Delbari SA, Sabahi Namini A, Ahmadi Z, Shahedi Asl M. Nano-diamond reinforced ZrB2–SiC composites. Ceram Int. 2020;46(8):10172–9. https://doi.org/10.1016/j. ceramint.2020.01.008
    11. Istgaldi H, Nayebi B, Ahmadi Z, Shahi P, Asl MS. Characterization of ZrB 2 – TiC composites reinforced with short carbon fibers. Ceram Int. 2020; 46(14): 23155 –64. https://doi.org/10.1016/j.ceramint.2020.06.095
    12. Lugovy M, Slyunyayev V, Orlovskaya N, Mitrentsis E, Aneziris CG, Graule T. Temperature dependence of elastic properties of ZrB 2 – SiC composites. Ceram Int. 2015;1–7. http://dx.doi.org/10.1016/j.ceramint.2015.10. 044
    13. Ivashchenko VI, Turchi PEA, Gonis A, Ivashchenko LA, Skrynskii PL. Electronic Origin of Elastic Properties of Titanium Carbonitride Alloys. 2006;37 (December):3391–6. https://doi.org/10.1007/s11661-006-1031-9
    14. Mohamed JJ, Salim SAS, Ahmad ZA. Comparative Study on the Effect of Zr4+ and Ca2+ Doping on the Properties of NiO. Procedia Chem. 2016;19:949–54. https://doi.org/10.1016/j.proche.2016.03.140
    15. Sengupta P, Sahoo SS, Bhattacharjee A, Basu S, Manna I. Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite. J Alloys Compd. 2021;850:156668. https://doi.org/10.1016/j. jallcom.2020.156668
    16. Grigoriev S, Volosova M, Peretyagin P, Seleznev A, Okunkova A, Smirnov A. The Effect of TiC Additive on Mechanical and Electrical Properties of Al2O3 Ceramic. Appl Sci. 2018 Nov 26;8(12):2385. https://www.mdpi.com/2076-3417/8/12/2385
    17. Neuman EW, Harrington GJK, Hilmas GE, Fahrenholtz WG. Elevated temperature electrical resistivity measurements of zirconium diboride using the van der Pauw Method. J Am Ceram Soc. 2019 Dec 24;102(12):7397–404. https://doi.org/10.1111/ jace.16636
    18. Sharma A, Karunakar DB. Effect of SiC and TiC addition on microstructural and mechanical characteristics of microwave sintered ZrB2 based hybrid composites. Ceram Int. 2021;47(18):26455–64. https://doi.org/10.1016/j.ceramint.2021.06.058
    19. Galizia P, Zoli L, Sciti D. Impact of residual stress on thermal damage accumulation, and Young’s modulus of fiber-reinforced ultra-high temperature ceramics. Mater Des. 2018;160:803–9.https://doi.org/10.1016/ j.matdes.2018.10.019
    20. Balak Z, Shahedi Asl M, Azizieh M, Kafashan H, Hayati R. Effect of different additives and open porosity on fracture toughness of ZrB2–SiC-based composites prepared by SPS. Ceram Int. 2017;43(2): 2209–20. http://dx.doi.org/10.1016/j.ceramint.2016.11.005
    21. Lajtai EZ. A theoretical and experimental evaluation of the Griffith theory of brittle fracture. Tectonophysics. 1971 Feb; 11(2): 129–56. https://doi.org/10.1016/ 0040-1951(71)90060-6

     

     

     

تحت نظارت وف ایرانی