ریزساختار و سختی آلیاژ Ti-6242 ساخته‌شده به‌روش‌های ذوب بستر پودر با پرتوی الکترونی و ذوب بستر پودر با لیزر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان 83111-84156، ایران

2 دانشکده مدیریت و مهندسی تولید، دانشگاه پلی تکنیک تورین، تورین 10129، ایتالیا

چکیده

مقدمه و اهداف: آلیاژ Ti-6Al-2Sn-4Zr-2Mo (Ti6242) یک آلیاژ تیتانیوم شبه‌آلفا با کاربرد گسترده در صنایع زیست‌پزشکی، خودرو و حمل و نقل هوایی و با مقاومت حرارتی بالا است. هدف این پژوهش، مقایسه ریزساختار و سختی نمونه‌های ساخته شده از این آلیاژ به دو روش ذوب بستر پودر با لیزر و ذوب بستر پودر با پرتوی الکترونی است.
مواد و روش‌ها: ریزساختار و سختی نمونه‌های آلیاژ Ti6242 تولید شده به این دو روش با استفاده از روش‌های میکروسکوپی نوری و الکترونی روبشی، پراش پرتو ایکس و سختی‌سنجی ویکرز ارزیابی شد.
یافتهها: میزان تخلخل هر دو نمونه در بازه‌ قابل قبول برای فرایندهای ذوب بستر پودر بود. ریزساختار نمونه‌ها شامل دانه‌های ستونی β اولیه حاوی فاز مارتنزیتی ά برای فرایند ذوب بستر پودر با لیزر و فازهای لایه‌ای β+α با ریخت ویدمن‌اشتاتن و سبدبافت و پرگنه‌های α برای فرایند ذوب بستر پودر با پرتوی الکترونی بود. نمودارهای ویلیام‌سون-هال، ریزکرنش بالاتر شبکه‌ در فرایند ذوب بستر پودر با لیزر را نشان داد. سختی متوسط در نمونه‌های ذوب بستر پودر با پرتوی الکترونی و ذوب بستر پودر با لیزر به‌ترتیب نزدیک به HV 408 و HV 401 به‌دست آمد.
نتیجه‌گیری: هر دو روش استفاده شده قابلیت تولید قطعات با درصد تخلخل قابل قبول را دارند. ریزساختار دو نمونه به دلیل تفاوت‌ها در تاریخچه حرارتی آنها کاملا مشابه نیست. ریزکرنش شبکه‌ای کمتر و سختی بالاتر از ویژگی‌های نمونه ذوب بستر پودر با پرتوی الکترونی در مقایسه با نمونه ذوب بستر پودر با لیزر است. سختی هر دو نمونه از سختی نمونه‌های ساخته شده به‌روش‌های سنتی بیشتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Microstructure and Hardness of Ti-6242 Alloy Fabricated by Electron Beam Powder Bed Fusion and Laser Powder Bed Fusion Methods

نویسندگان [English]

  • Amir Hossein Emami Ghalehghasemi 1
  • Abolfazl Azadi 1
  • Behzad Niroumand 1
  • Manuela Galati 2
  • Abdollah Saboori 2
1 Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2 Department of Management and Production Engineering, Politecnico di Torino, 10129, Torino, Italy
چکیده [English]

Introduction and Objectives: Ti-6Al-2Sn-4Zr-2Mo (Ti6242) alloy is a near-alpha titanium alloy widely used in biomedical, automobile, and aviation industries, known for having a high service temperature. The objectives of this study are to compare the electron beam melting and selected laser melting techniques in terms of the microstructure and hardness developed in Ti6242 alloy.
Materials and Methods: Microstructure and hardness of Ti6242 alloy samples produced by the two-powder bed fusion techniques were analyzed using optical and scanning electron microscopy, X-ray diffractometry, and Vickers hardness test.
Results: The porosity levels in both samples were within the acceptable ranges for powder bed fusion processes. The solidified microstructure of laser powder bed fusion samples consisted of columnar β grains with martensitic α' phase, and that of electron beam powder bed fusion sample consisted of lamellar α+β phases with Widmanstätten and basketweave morphology and α colonies. Williamson-Hall plots revealed higher lattice microstrain in the laser powder bed fusion process. The average hardness values of electron beam powder bed fusion and laser powder bed fusion samples were approximately 408 HV and 401 HV.
Conclusion: Both powder bed fusion techniques employed were capable of producing samples of acceptable porosity levels. The solidified microstructures of the two techniques were somewhat different due to different heating and cooling histories experienced. The electron beam powder bed fusion sample enjoyed smaller lattice microstrain and higher hardness than the laser beam powder bed fusion sample. Hardness of both samples was higher than those of the conventionally fabricated components.

کلیدواژه‌ها [English]

  • Additive Manufacturing
  • Electron Beam Powder Bed Fusion
  • Laser Powder Bed Fusion
  • Ti6242 alloy
  • Microstructure
  1. Harun W, Kamariah M, Muhamad N, Ghani S, Ahmad F, Mohamed Z. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 2018;327:128-51. https://doi.org/ 10.1016/j.powtec.2017.12.058
  2. Veiga C, Davim JP, Loureiro A. Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci. 2012;32(2):133-48.
  3. Al-Rubaie K, Melotti S, Rabelo A, Paiva J, Elbestawi M, Veldhuis S. Machinability of SLM-produced Ti6Al4V titanium alloy parts. J Manuf Process 57: 768–786. 2020. https://doi.org/10.1016/j.jmapro. 2020.07.035
  4. Galati M, Defanti S, Saboori A, Rizza G, Tognoli E, Vincenzi N, et al. An investigation on the processing conditions of Ti-6Al-2Sn-4Zr-2Mo by electron beam powder bed fusion: Microstructure, defect distribution, mechanical properties and dimensional accuracy. Addit Manuf. 2022;50:102564. https://doi. org/10.1016/j.addma.2021.102564
  5. Mosallanejad MH, Niroumand B, Aversa A, Saboori A. In-situ alloying in laser-based additive manufacturing processes: A critical review. J Alloys Compd. 2021;872:159567. https://doi.org/10.1016/ j.jallcom.2021.159567
  6. Sames WJ, List F, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5): 315-60. https://doi.org/10.1080/09506608.2015.1116649
  7. Ladani L, Sadeghilaridjani M. Review of powder bed fusion additive manufacturing for metals. Met. 2021; 11(9):1391. https://doi.org/10.3390/met11091391
  8. Tamayo JA, Riascos M, Vargas CA, Baena LM. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon. 2021; 7(5): e06892. https://doi.org/10.1016/j.heliyon.2021.e06892
  9. Gong X, Anderson T, Chou K. Review on powder-based electron beam additive manufacturing technology. Manuf Rev. 2014;1:1-12. http://dx.doi. org/10.1051/mfreview/2014001
  10. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res. 2016;34(3):369-85. https://doi.org/10.1002/jor.23075
  11. Zhang LC, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater. 2016;18(4): 463-75. https://doi.org/10.1002/adem.201500419
  12. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;102:844-62. https://doi.org/10.1016/j.msec.2019.04.064
  13. Gogia A. High-temperature titanium alloys. Def Sci J. 2005;55(2):149-73.
  14. Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 1996;213(1-2): 103-14. https://doi.org/10.1016/0921-5093(96)10233-1
  15. Gong G, Ye J, Chi Y, Zhao Z, Wang Z, Xia G, et al. Research status of laser additive manufacturing for metal: a review. J Mater Res Technol. 2021;15:855-84. https://doi.org/10.1016/j.jmrt.2021.08.050
  16. Donachie M. Titanium: A Technical Guide. ASM International. 2000;369.
  17. Roshani M, Abedi HR, Saboori A. Comparing the Cold, Warm, and Hot Deformation Flow Behavior of Selective Laser‐Melted and Electron‐Beam‐Melted Ti–6Al–2Sn–4Zr–2Mo Alloy. Adv Eng Mater. 2024;26 (2):2301046. https://doi.org/10.1002/adem.202301046
  18. Kaushik HC, Korayem MH, Shaha SK, Kacher J, Hadadzadeh A. Achieving strength-ductility synergy in a laser-powder bed fused near-α titanium alloy through well-crafted heat treatments. J Alloys Compd. 2023;968:171913. https://doi.org/10.1016/j.jallcom. 2023.171913
  19. Kaushik HC, Korayem MH, Hadadzadeh A. Developing a practice for the heat treatment of laser-powder bed fused Ti-6Al-2Sn-4Zr-2Mo-0.08 Si alloy. Vac. 2023; 217: 112554. https://doi.org/10.1016/j. vacuum. 2023.112554
  20. Zhu Z, Ng FL, Seet HL, Nai SML. Tailoring the microstructure and mechanical property of laser powder bed fusion fabricated Ti–6Al–2Sn–4Zr–2Mo via heat treatment. J Alloys Compd. 2022;895: 162648. https://doi.org/10.1016/j.jallcom.2021.162648
  21. Sui S, Chew Y, Hao Z, Weng F, Tan C, Du Z, et al. Effect of cyclic heat treatment on microstructure and mechanical properties of laser aided additive manufacturing Ti–6Al–2Sn–4Zr–2Mo alloy. Adv Powder Mater. 2022;1(1):100002. https://doi.org/10. 1016/j.apmate.2021.09.002
  22. Casati R, Boari G, Rizzi A, Vedani M. Effect of annealing temperature on microstructure and high-temperature tensile behaviour of Ti-6242S alloy produced by Laser Powder Bed Fusion. Eur J Mater. 2022; 1(1): 72-83. https://doi.org/10.1080/26889277. 2021.1997341
  23. Fleißner-Rieger C, Pfeifer T, Turk C, Clemens H. Optimization of the post-process heat treatment strategy for a near-α titanium base alloy produced by laser powder bed fusion. Mater. 2022;15(3):1032. https://doi.org/10.3390/ma15031032
  24. Zhu Z, Kumar P, Ng FL, Seet HL, Ramamurty U, Nai SML. Heat treatment effect on the microstructure and elevated temperature tensile property of the Ti6242S alloy fabricated via laser powder bed fusion. J Alloys Compd. 2022;925:166656. https://doi.org/10.1016/ j.jallcom.2022.166656
  25. Kaushik HC, Korayem MH, Hadadzadeh A. Determination of α to β phase transformation kinetics in laser-powder bed fused Ti–6Al–2Sn–4Zr–2Mo-0.08 Si and Ti–6Al–4V alloys. Mater Sci Eng. A 2022; 860: https://doi.org/10.1016/j.msea.2022.144294
  26. Fan H, Liu Y, Yang S. Martensite decomposition during post-heat treatments and the aging response of near-α Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy processed by selective laser melting (SLM). J Micromech Mol Phys. 2021;6(02):2050018. https:// doi.org/10.1142/S2424913020500186
  27. Fleißner-Rieger C, Pfeifer T, Jörg T, Kremmer T, Brabetz M, Clemens H, et al. Selective laser melting of a near‐α Ti6242S alloy for high‐performance automotive parts. Adv Eng Mater. 2021;23(12): 2001194. https://doi.org/10.1002/adem.202001194
  28. Fan H, Yang S. Effects of direct aging on near-alpha Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM). Mater Sci Eng A. 2020;788:139533. https://doi.org/10.1016/ j.msea.2020.139533
  29. Mote VD, Purushotham Y, Dole B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys. 2012;6:1-8. https://doi.org/10.1186/2251-7235-6-6
  30. Liu Z, Wang Z, Gao C, Liu R, Xiao Z. Microstructure, anisotropic mechanical properties and very high cycle fatigue behavior of Ti6Al4V produced by selective electron beam melting. Met Mater Int. 2021;27:2550-61. https://doi.org/10.1007/ s12540-020-00664-2
  31. Dharmendra C, Alaghmandfard R, Hadadzadeh A, Amirkhiz B, Mohammadi M. Influence of build orientation on small-scale properties of electron beam melted Ti-6Al-4V. Mater Lett. 2020;266:126970. https://doi.org/10.1016/j.matlet.2019.126970
  32. Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy: A review. Mater Des. 2019;164:107552. https://doi.org/10.1016/j.matdes.2018.107552
  33. Wang D, Liu Z, Liu W. Experimental measurement of vacuum evaporation of aluminum in Ti-Al, V-Al, Ti6Al4V alloys by electron beam. Met. 2021;11 (11):1688. https://doi.org/10.3390/met11111688
  34. Chen T, Pang S, Tang Q, Suo H, Gong S. Evaporation ripped metallurgical pore in electron beam freeform fabrication of Ti-6-Al-4-V. Mater Manuf Process. 2016; 31(15): 1995-2000. https://doi.org/10.1080/ 10426914. 2015.1127948
  35. Juechter V, Scharowsky T, Singer R, Körner C. Processing window and evaporation phenomena for Ti–6Al–4V produced by selective electron beam melting. Acta Mater. 2014;76:252-8. https://doi.org/ 10.1016/j.actamat.2014.05.037
  36. Cheng B, Price S, Lydon J, Cooper K, Chou K. On process temperature in powder-bed electron beam additive manufacturing: model development and validation. J Manuf Sci Eng. 2014;136(6):061018. https://doi.org/10.1115/1.4028484
  37. Tan X, Kok Y, Tan YJ, Vastola G, Pei QX, Zhang G, et al. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V. J Alloys Compd. 2015;646:303-9. https://doi.org/10.1016/j.jallcom.2015.05.178
  38. Mosallanejad MH, Niroumand B, Ghibaudo C, Biamino S, Salmi A, Fino P, et al. In-situ alloying of a fine grained fully equiaxed Ti-based alloy via electron beam powder bed fusion additive manufacturing Addit Manuf. 2022;56: 102878. https://doi.org/ 10.1016/j.addma.2022.102878
  39. Safdar A, Wei L-Y, Snis A, Lai Z. Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater Charact. 2012;65:8-15. https://doi. org/10.1016/j.matchar.2011.12.008
  40. Al-Bermani S, Blackmore M, Zhang W, Todd I. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metall Mater Trans A. 2010;41:3422-34. https://doi.org/10.1007/s11661-010-0397-x
  41. Carrozza A, Marchese G, Saboori A, Bassini E, Aversa A, Bondioli F, et al. Effect of Aging and Cooling Path on the Super β-Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM). Mater. 2022;15(12):4067. https://doi.org/10.3390/ma15124067
  42. Park CH, Won JW, Park J-W, Semiatin S, Lee CS. Mechanisms and kinetics of static spheroidization of hot-worked Ti-6Al-2Sn-4Zr-2Mo-0.1 Si with a lamellar microstructure. Metall Mater Trans A. 2012; 43:977-85. https://doi.org/10.1007/s11661-011-1019-y
  43. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817-29. https://doi.org/10.2320/ matertrans.46.2817
  44. Talebi M, Niroumand B, Razaghian A, Saboori A, Iuliano L. Process-induced microstructural variations in laser powder bed fusion of novel titanium alloys: A comprehensive study on volumetric energy density and alloying effects. J Mater Res Technol. 2024;31: 1430-42. https://doi.org/10.1016/j.jmrt.2024.06.167
  45. Shen W, Soboyejo W, Soboyejo A. Microstructural effects on fatigue and dwell-fatigue crack growth in α/β Ti-6Al-2Sn-4Zr-2Mo-0.1 Si. Metall Mater Trans A. 2004;35:163-87. https://doi.org/10.1007/s11661-004-0119-3
  46. Reed-Hill RE, Abbaschian R, Abbaschian R. Physical metallurgy principles: Van Nostrand New York; 1973.
  47. Galarraga H, Warren RJ, Lados DA, Dehoff RR, Kirka MM, Nandwana P. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater Sci Eng A. 2017;685:417-28. https://doi.org/10.1016/j. msea. 2017.01.019

 

 

ارتقاء امنیت وب با وف ایرانی