عملکرد الکتروشیمیایی کاتد لیتیوم وانادیوم فسفات سنتزشده به روش احتراق محلولی با کمک ستیل تری متیل آمونیوم بروماید به‌عنوان سوخت جهت کاربرد در باتری‌های لیتیوم- یون

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد و متالورژی دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

مقدمه و اهداف: بهینه‌سازی فسفات‌های قلیایی وانادیوم از طریق کنترل روش‌های سنتز، نقش کلیدی در بهبود عملکرد آن‌ها ایفا می‌کند. در این پژوهش، تأثیر افزودن سوخت ستیل تری متیل آمونیوم بروماید با درصدهای مولی مختلف نسبت ماده اکسنده (نیترات لیتیوم) برخواص الکتروشیمیایی کاتد لیتیوم وانادیوم فسفات بررسی شد.
مواد و روش‌ها: روش سنتز احتراقی محلول، برای تولید نمونه‌های لیتیوم وانادیوم فسفات با دو نسبت مختلف سوخت به اکسنده (0/5= φ و 1=φ) استفاده گردید و از ستیل تری متیل آمونیوم بروماید علاوه بر سوخت به‌عنوان منبع کربن نیز استفاده شد.
یافته‌ها: نتایج میکروسکوپ الکترونی روبشی نشان داد که افزایش نسبت سوخت به اکسنده از 0/5 به 1، باعث ایجاد ذرات کروی در مورفولوژی شد که به نوبه خود منجر به بهبود عملکرد الکتروشیمیایی شد. نمونه لیتیوم وانادیوم فسفات با 1=φ ، عملکرد الکتروشیمیایی برتر با ظرفیت تخلیه ویژه‌ای معادل 111/17 میلی‌آمپر ساعت بر گرم در نرخ جریان  C 0/1 و 68 میلی‌آمپر ساعت بر گرم در نرخ جریان C 5 از خود نشان داد. پس از 150 چرخه، نمونه نمونة لیتیوم وانادیوم فسفات با 1=φ  ظرفیت 79/16 میلی‌آمپر ساعت بر گرم را در نرخ جریان C 5 حفظ کرد.
نتیجه‌گیری: یافته های این پژوهش نشان میدهد که استفاده از ستیل تری متیل آمونیوم بروماید در فرایند سنتز احتراقی محلول و تنظیم نسبت سوخت به اکسنده، می‌تواند نقش مهمی در بهینه‌سازی ساختار و بهبود عملکرد الکتروشیمیایی کاتد لیتیوم وانادیوم فسفات داشته باشد. نتایج این تحقیق می‌تواند در بهینه‌سازی فرایندهای سنتز و توسعه مواد جدید برای باتری‌های نسل بعدی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Electrochemical Characteristics of Lithium Vanadium Phosphate Cathode Synthesized by the Solution Combustion Method Utilizing Cetyltrimethylammonium Bromide as a Fuel for Lithium-Ion Batteries Applications

نویسندگان [English]

  • Mohammad Tahernejad Javazm
  • Masoud Hasheminiasari
  • Seyed Morteza Masoudpanah
Department of Materials Science and Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Introduction and Objectives: Optimization of vanadium phosphate compounds through the control of synthesis methods plays a key role in enhancing their performance. In this research, the effect of adding cetyltrimethylammonium bromide with different molar percentages relative to the oxidizer (lithium nitrate) on the electrochemical properties of lithium vanadium phosphate cathode was investigated.
Materials and Methods: The solution combustion synthesis method was used to produce lithium vanadium phosphate samples with two different fuel-to-oxidizer ratios (φ = 0.5 and φ = 1). Cetyltrimethylammonium bromide was used not only as a fuel but also as a carbon source.
Results: Scanning electron microscopy results showed that increasing the fuel-to-oxidizer ratio from 0.5 to 1 led to the formation of spherical particles in the morphology, which improved the electrochemical performance. The lithium vanadium phosphate sample with φ = 1 exhibited superior electrochemical performance, with a specific discharge capacity of 111.17 mAh/g at a current rate of 0.1C and 68 mAh/g at a current rate of 5C. After 150 cycles, the lithium vanadium phosphate sample with φ = 1 maintained a capacity of 79.16 mAh/g at a current rate of 5C.
Conclusion: The findings of this research indicate that the use of cetyltrimethylammonium bromide in the solution combustion synthesis process and the adjustment of the fuel-to-oxidizer ratio can play a significant role in optimizing the structure and improving the electrochemical performance of lithium vanadium phosphate cathode. The results of this study can be utilized in optimizing synthesis processes and developing new materials for next-generation batteries.

کلیدواژه‌ها [English]

  • Fuel-to-oxidant ratio
  • Li3V2(PO4)3
  • Discharge capacity
  • Cycling performance
  • Rate capability
  • Kinetic properties
  • Solution combustion synthesis
  1. Tian J, Fan Y, Pan T, Zhang X, Yin J, Zhang Q. A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems. Renew Sust Energ. 2024;189:113978. https://doi.org/10.1016/j.rser.2023.113978
  2. Yang B, Qian Y, Li Q, Chen Q, Wu J, Luo E, et al. Critical summary and perspectives on state-of-health of lithium-ion battery. Renewable and Sustainable Energy Rev. 2024;190:114077. https://doi.org/10.1016/j.rser.2023.114077
  3. Mahanipour HG, Masoudpanah S, Adeli M, Hoseini SMH. Regeneration of LiNi0. 6Co0. 2Mn0. 2O2 material from spent lithium-ion batteries by solution combustion synthesis method. J Energy Storage 2024;79:110192. https://doi.org/10.1016/j.est.2023.110192
  4. Wakihara M. Recent developments in lithium ion batteries. Mater Sci Eng R: Rep. 2001;33(4):109-34. https://doi.org/10.1016/S0927-796X(01)00030-4
  5. Xu X, Han X, Lu L, Zhang Z, Wang F, Yang M, et al. Challenges and opportunities toward long-life lithium-ion batteries. J Power Sources 2024;603:234445. https://doi.org/10.1016/j.jpowsour.2024.234445
  6. Zanoletti A, Carena E, Ferrara C, Bontempi E. A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries 2024;10(1):38. https://doi.org/10.3390/batteries10010038
  7. Xia Y, Yu L, Lu C, Zhu J, Xiao Z, Zhang J, et al. Passion fruit-like structure endows Li3V2 (PO4) 3@ C/CNT composite with superior cyclic stability and rate performance. J Alloys Compd. 2021;859:157806. https://doi.org/10.1016/j.jallcom.2020.157806
  8. Chen J, Deng W, Gao X, Yin S, Yang L, Liu H, et al. Demystifying the lattice oxygen redox in layered oxide cathode materials of lithium-ion batteries. ACS nano 2021;15(4):6061-104. https://doi.org/10.1021/acsnano.1c00304
  9. Zhao D, Mo L, Han Q, Xie L, Zhu L, Cao X. Nitrogen-doped carbon-coated Li 3 V 2 (PO 4) 3 as cathode materials for high-performance lithium storage. Ion. 2021;27:507-15. https://doi.org/10.1007/s11581-020-03878-x
  10. Hsiang H-I, Cai B-R, Chung S-H, Chu L-W, Tseng J-R, Shen Y-M. Preparation and electrochemical properties of Li3V2 (PO4) 3 glass-ceramic materials. Ceram Int. 2023;49(21):34155-63. https://doi.org/10.1016/j.ceramint.2023.08.122
  11. Mohanty D, Lu Z-L, Hung I-M. Effect of carbon coating on electrochemical properties of Li3V2 (PO4) 3 cathode synthesized by citric-acid gel method for lithium-ion batteries. J Appl Electrochem. 2023;53(5):1003-13. https://doi.org/10.1007/s10800-022-01828-1
  12. Ruan T, Lu S, Lu J, Niu J, Li R. Unraveling the intercalation chemistry of multi-electron reaction for polyanionic cathode Li3V2(PO4)3. Energy Storage Mater. 2023;55:546-55. https://doi.org/10.1016/j.ensm.2022.12.021
  13. Tong J, Su A, Ma T, Ba J, Wang L, Zhang Z, et al. Boosting Low Temperature Performance of Lithium Ion Batteries at− 40° С Using a Binary Surface Coated Li3V2 (PO4) 3 Cathode Material. Adv Funct Mater. 2024;34(10):2310934. https://doi.org/10.1002/adfm.202310934
  14. Xu R, Yan Y, Wang X, Yu Z, Liu Z, Wang J, et al. High specific capacity of Li3V2 (PO4) 3/C glass-ceramic with ultralow carbon content. Ceram Int. 2024;50(13):22905-13. https://doi.org/10.1016/j.ceramint.2024.04.015
  15. Choi D, Shim J-Y, Choi S, Park S, Jeong H, Kim M-S, et al. Formation of effective carbon composite structure for improving electrochemical performances of rhombohedral Li3V2 (PO4) 3 as both cathode and anode materials for lithium ion batteries. J Electroanal Chem. 2023;928:117076. https://doi.org/10.1016/j.jelechem.2022.117076
  16. Lokeswararao Y, Dakshinamurthy AC, Budumuru AK, Sudakar C. Influence of nano-fibrous and nano-particulate morphology on the rate capability of Li3V2 (PO4) 3/C Li-ion battery cathode. Mater Res Bull. 2023;166:112331. https://doi.org/10.1016/j.materresbull.2023.112331
  17. Zhang Z, He Q, Lu J, Xu Q, Tao Y, Du J, et al. Preparation of Li3V2 (PO4) 3@ C composites using aluminum chloride catalyzed fermentation residue of bioethanol production with reed as carbon source for long life Li-ion batteries. Ind Crops Prod. 2024;209:117946. https://doi.org/10.1016/j.indcrop.2023.117946
  18. Jiang S. Fabrication and characterization of plate-like Li3V2 (PO4) 3@ C as cathode material for energy storage. Solid State Ion. 2018;325:128-32. https://doi.org/10.1016/j.ssi.2018.08.005
  19. Li X, Wang N, Su T, Chai Y. Three-dimensional carbon network supported Li3V2 (PO4) 3/C and Na3V2 (PO4) 3/C composites for lithium/sodium storage. Appl Surf Sci. 2022;601:154285. https://doi.org/10.1016/j.apsusc.2022.154285
  20. Yaghtin A, Masoudpanah SM, Hasheminiasari M, Salehi A, Safanama D, Ong CK, et al. Effect of reducing agent on solution synthesis of Li3V2 (PO4) 3 cathode material for lithium ion batteries. Mol. 2020;25(16):3746. https://doi.org/10.3390/molecules25163746
  21. Zhai J, Zhao M, Wang D, Qiao Y. Effect of MgO nanolayer coated on Li3V2 (PO4) 3/C cathode material for lithium-ion battery. J Alloys Compd. 2010;502(2):401-6. https://doi.org/10.1016/j.jallcom.2010.04.181
  22. Yan H, Li M, Fu Y, Chen S, Wang Y, Zhang B. Conductive polypyrrole-promoted Li3V2 (PO4) 3 nanocomposite for rechargeable lithium energy storage. J Phys Chem Solids 2022;167:110787. https://doi.org/10.1016/j.jpcs.2022.110787
  23. Zhu L, Mo L, Xie L, Cao X. Synthesis and electrochemical Li-storage performance of Li2ZrO3-Li3V2 (PO4) 3/C composites. Electrochem commun. 2021;122:106908. https://doi.org/10.1016/j.elecom.2020.106908
  24. Jiang L, Fu C, Li K, Zhou H, Huang Y, Kuang Y. K-doped Li3V2 (PO4) 3: a novel cathode material for high performance lithium-ion batteries. Mater Lett. 2017;198:73-5. https://doi.org/10.1016/j.matlet.2017.04.014
  25. Kee Y, Dimov N, Kobayashi E, Kitajou A, Okada S. Structural and electrochemical properties of Fe-and Al-doped Li3V2 (PO4) 3 for all-solid-state symmetric lithium ion batteries prepared by spray-drying-assisted carbothermal method. Solid State Ion. 2015;272:138-43. https://doi.org/10.1016/j.ssi.2015.01.006
  26. Li N, Yu Y, Tong Y, Liu T, Zhang X. Sc3+-doping effects on porous Li3V2 (PO4) 3/C cathode with superior rate performance and cyclic stability. Ceram Int. 2021;47(24):34218-24. https://doi.org/10.1016/j.ceramint.2021.08.331
  27. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM. Li3V2 (PO4) 3 cathode materials for lithium-ion batteries: A review. J Power Sources 2014;258:19-38. https://doi.org/10.1016/j.jpowsour.2014.01.126
  28. Chang C, Xiang J, Shi X, Han X, Yuan L, Sun J. Hydrothermal synthesis of carbon-coated lithium vanadium phosphate. Electrochim Acta. 2008;54(2): 623-7. https://doi.org/10.1016/j.electacta.2008.07.038
  29. Wang L, Zhou X, Guo Y. Synthesis and performance of carbon-coated Li3V2 (PO4) 3 cathode materials by a low temperature solid-state reaction. J Power Sources 2010;195(9):2844-50. https://doi.org/10.1016/j.jpowsour.2009.11.056
  30. Jiang T, Pan W, Wang J, Bie X, Du F, Wei Y, et al. Carbon coated Li3V2 (PO4) 3 cathode material prepared by a PVA assisted sol–gel method. Electrochim Acta 2010;55(12):3864-9. https://doi.org/10.1016/j.electacta.2010.02.026
  31. Wang J, Zhang X, Liu J, Yang G, Ge Y, Yu Z, et al. Long-term cyclability and high-rate capability of Li3V2 (PO4) 3/C cathode material using PVA as carbon source. Electrochim Acta. 2010;55(22):6879-84. https://doi.org/10.1016/j.electacta.2010.05.077
  32. Rui X, Ding N, Liu J, Li C, Chen C. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2 (PO4) 3 cathode material. Electrochim Acta. 2010;55(7):2384-90. https://doi.org/10.1016/j.electacta.2009.11.096
  33. Rui X, Li C, Liu J, Cheng T, Chen C. The Li3V2 (PO4) 3/C composites with high-rate capability prepared by a maltose-based sol–gel route. Electrochim Acta. 2010;55(22):6761-7. https://doi.org/10.1016/j.electacta.2010.05.093
  34. Sanei SA, Masoudpanah SM, Bafghi MS. CTAB-assisted solvothermal growth of CuCo2S4 on nickel foam for high-performance symmetric supercapacitor. J Energy Storage 2023;73:109130. https://doi.org/10.1016/j.est.2023.109130
  35. Zhang L-L, Li Y, Peng G, Wang Z-H, Ma J, Zhang W-X, et al. High-performance Li3V2 (PO4) 3/C cathode materials prepared via a sol–gel route with double carbon sources. J Alloys Compd. 2012;513:414-9. https://doi.org/10.1016/j.jallcom.2011.10.059
  36. Zheng J-C, Li X-H, Wang Z-X, Guo H-J, Hu Q-Y, Peng W-J. Li3V2 (PO4) 3 cathode material synthesized by chemical reduction and lithiation method. J Power Sources 2009;189(1):476-9. https://doi.org/10.1016/j.jpowsour.2008.12.044
  37. Sarmadi A, Masoudpanah S, Ong C. Combustion synthesis of LiFePO4 cathode material: Effects of l-Lysine fuel and solvent type. J Electroanal Chem. 2023;938:117450. https://doi.org/10.1016/j.jelechem.2023.117450
  38. Huang Z, Luo P, Zheng H, Lyu Z. Aluminum-doping effects on three-dimensional Li3V2 (PO4) 3@ C/CNTs microspheres for electrochemical energy storage. Ceram Int. 2022;48(13):18765-72. https://doi.org/10.1016/j.ceramint.2022.03.151
  39. Hwang J, Kong KC, Chang W, Jo E, Nam K, Kim J. New liquid carbon dioxide based strategy for high energy/power density LiFePO4. Nano Energy 2017;36:398-410. https://doi.org/10.1016/j.nanoen.2017.04.046
  40. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005;43(8):1731-42. https://doi.org/10.1016/j.carbon.2005.02.018
  41. Bograchev DA, Volfkovich YM, Sosenkin VE, Podgornova OA, Kosova NV. The influence of porous structure on the electrochemical properties of LiFe0. 5Mn0. 5PO4 cathode material prepared by mechanochemically assisted solid-state synthesis. Energies 2020;13(3):542. https://doi.org/10.3390/en13030542
  42. Yang Q, Liu Q, Ling W, Dai H, Chen H, Liu J, et al. Porous Electrode Materials for Zn-Ion Batteries: From Fabrication and Electrochemical Application. Batteries 2022;8(11):223. https://doi.org/10.3390/batteries8110223
  43. Chen Z, Yan X, Zhu H, Wang Y, Liu Q, Duan J, et al. Lithium-Rich Layered Oxide with a Porous Prism Architecture for High-Performance Cathode Materials of Lithium-Ion Batteries. ACS Appl Energy Mater. 2022;5(9):10973-82. https://doi.org/10.1021/acsaem.2c01653
  44. Ivanishchev A, Churikov A, Ushakov A. Lithium transport processes in electrodes on the basis of Li3V2 (PO4) 3 by constant current chronopotentiometry, cyclic voltammetry and pulse chronoamperometry. Electrochim Acta. 2014;122:187-96. https://doi.org/10.1016/j.electacta.2013.12.131
  45. Kalaga K, Sayed FN, Rodrigues M-TF, Babu G, Gullapalli H, Ajayan PM. Doping stabilized Li3V2(PO4)3 cathode for high voltage, temperature enduring Li-ion batteries. J Power Sources 2018;390:100-7. https://doi.org/10.1016/j.jpowsour.2018.04.048
  46. Wang H, Li Y, Huang C, Zhong Y, Liu S. High-rate capability of Li3V2 (PO4) 3/C composites prepared via a polyvinylpyrrolidone-assisted sol–gel method. J Power Sources 2012;208:282-7. https://doi.org/10.1016/j.jpowsour.2012.02.055
  47. Qiao YQ, Tu JP, Xiang JY, Wang XL, Mai YJ, Zhang D, et al. Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C cathode materials. Electrochim Acta. 2011;56(11):4139-45. https://doi.org/10.1016/j.electacta.2011.01.109
  48. Zhang L-L, Liang G, Peng G, Zou F, Huang Y-H, Croft MC, et al. Significantly improved electrochemical performance in Li3V2 (PO4) 3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 2012;116(23):12401-8.
  49. Zhang P, Zhai X, Huang H, Zhou J, Li X, He Y, et al. Synergistic Na+ and F− co-doping modification strategy to improve the electrochemical performance of Li-rich Li1· 20Mn0· 54Ni0· 13Co0· 13O2 cathode. Ceram Int. 2020;46(15):24723-36. https://doi.org/10.1016/j.ceramint.2020.06.263
  50. Keshavarz A, Masoudpanah S, Nasrinpour H, Sarkar T, Aslibeiki B. Effect of strontium phosphate coating on NCM811 powders for high-performance Li-ion battery cathode. J Energy Storage 2024;99:113379. https://doi.org/10.1016/j.est.2024.113379

 

 

 

 

تحت نظارت وف ایرانی