نوع مقاله : مقاله پژوهشی
نویسندگان
دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، شاهینشهر، اصفهان، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Introduction and Objectives: Some novel alloys, including high-entropy alloys, have gained increasing attention due to their diverse properties and applications. This study aims to investigate the relationship between the magnetic properties and phase transformations of the FeCrCoNiMn high-entropy alloy with the addition of titanium.
Materials and Methods: The high entropy alloy powder was synthesized by mechanically alloying pure constituent elements in a planetary mill. The synthesized high entropy alloy powder was phase-analyzed using the X-ray diffraction method. Furthermore, phase structure formation was predicted by thermodynamic functions via JMatPro software. The magnetic behavior was analyzed using a vibrating sample magnetometer, and particle morphology was examined using field emission scanning electron microscopy.
Results: The FeCrCoNiMn alloy milled includes a single-phase FCC structure after 40 hours. The presence of Ti in the composition of the alloy created BCC and Laves phase structures. Concurrently, the addition of titanium increased both the coercivity force and saturation magnetization.
Conclusion: The increase in saturation magnetization is due to the formation of the BCC phase in the FeCrCoNiMnTi alloy, while the BCC phase has a strong exchange interaction between ferromagnetic elements. However, the presence of both the non-magnetic Laves intermetallic phase and interphase boundaries has increased the coercivity force.
کلیدواژهها [English]