ساخت و ارزیابی زخم‌پوش هیدروژلی حاوی پلی‌وینیل الکل، کیتوسان، فلکس و ذرات روی برای ترمیم زخم‌های مزمن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد، دانشکده فنی و مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، ایران

2 گروه علوم پایه، دانشکده فنی و مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، ایران

چکیده

مقدمه و اهداف: این پژوهش با هدف ساخت و ارزیابی هیدروژل‌های پوشاننده زخم بر پایه پلی‌وینیل الکل، کیتوسان، عصاره فلکس و میکروذرات روی، به‌منظور بهبود خواص مکانیکی و زیستی انجام شده است.
مواد و روش‌ها: چهار گروه هیدروژلی با مقادیر مختلف میکروذرات روی (0، 2، 5 و 10 درصد وزنی)، تهیه شدند. ساختار هیدروژل‌ها با استفاده از پراش پرتو ایکس و میکروسکوپ الکترونی روبشی بررسی شد. همچنین، خواص مکانیکی شامل استحکام کششی و ازدیاد طول تا شکست، اندازه‌گیری شد. به‌علاوه، آزمون‌های زیست‌تخریب‌پذیری و جذب آب برای ارزیابی عملکرد زیستی هیدروژل انجام گرفت.
یافته‌ها: بررسی فازی نشان داد که با افزایش درصد روی، ساختار هیدروژل‌ها از حالت آمورف به نیمه‌بلوری تغییر یافت. تصاویر میکروسکوپی، توزیع یکنواخت ذرات روی را در ساختار هیدروژلی تأیید کردند. آزمون‌های مکانیکی نشان دادند که نمونه‌های دارای 2 و 5 درصد روی بهترین عملکرد را داشتند، به‌طوری‌که استحکام کششی آن‌ها به‌ترتیب 20 و 12/8 مگاپاسکال و ازدیاد طول آن‌ها 24/3 و 2/5 درصد بود. درمقابل، تجمع ذرات روی در نمونه حاوی 10 درصد باعث کاهش این خواص شد. در آزمون زیست‌تخریب‌پذیری، نمونه دارای 5 درصد روی پس از 30 روز، حدود 45 درصد از وزن خود را حفظ کرد، درحالی‌که نمونه بدون روی کاملاً تخریب شد. همچنین، نمونه‌های دارای 2 و 5 درصد روی، بیشترین ظرفیت جذب آب را به‌ترتیب حدود 780 و 800 درصد نشان دادند.
نتیجه‌گیری: هیدروژل‌های بهینه‌شده با ترکیب مناسب میکروذرات روی و مواد زیست‌فعال، خواص مکانیکی و زیستی بهتری از خود نشان دادند و به‌عنوان گزینه‌ای کارآمد برای درمان زخم‌های مزمن پیشنهاد می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation and Evaluation of Hydrogel Wound Dressings Containing Polyvinyl Alcohol, Chitosan, Flax, and Zinc Particles for Chronic Wound Healing

نویسندگان [English]

  • Azam Rastegar 1
  • Narges Johari 1
  • Maryam Zare 2
1 Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
2 Basic Sciences Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
چکیده [English]

Introduction and Objectives: This study aims to develop and evaluate hydrogel wound dressings based on polyvinyl alcohol, chitosan, flax extract, and zinc microparticles to enhance mechanical and biological properties.
Materials and Methods: Four groups of hydrogels containing different concentrations of zinc microparticles (0, 2, 5, and 10 wt. %) were fabricated. The structural properties were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties, including tensile strength and elongation at break, were assessed. Additionally, biodegradability and water absorption tests were conducted to evaluate the hydrogel's biological performance.
Results: Phase analysis indicated a transition from an amorphous to a semi-crystalline structure with increasing zinc microparticle concentration. Microscopic images confirmed the uniform distribution of zinc particles within the hydrogel matrix. Mechanical testing revealed that hydrogels with 2% and 5% zinc exhibited optimal properties, achieving tensile strengths of 20 MPa and 12.8 MPa and elongations of 24.3% and 2.5%, respectively. However, aggregation of zinc particles at 10% concentration reduced mechanical performance. Biodegradability tests showed that after 30 days, the hydrogel containing 5% zinc retained about 45% of its weight, whereas the zinc-free sample was fully degraded. Additionally, water absorption capacity improved, with 2% and 5% zinc-containing hydrogels achieving maximum absorption levels of approximately 780% and 800%, respectively.
Conclusion: The optimized hydrogel wound dressings, incorporating zinc microparticles and bioactive materials, demonstrated enhanced mechanical and biological properties, making them a promising candidate for chronic wound treatment.

کلیدواژه‌ها [English]

  • Zinc
  • Flax
  • Chitosan
  • Poly vinyl alcohol
  • Wound dressing
  1. Piipponen M, Li D, Landén NX. The immune functions of keratinocytes in skin wound healing. Int J Mol Sci. 2020;21(22):8790. https://doi.org/10.3390/ijms21228790
  2. Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679-91. https://doi.org/10.1038/nri2622
  3. Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci. 2016; 17(12):2085. https://doi.org/10.3390/ijms17122085
  4. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017; 34:599-610. https://doi.org/1007/s12325-017-0478-y
  5. Szycher M, Lee SJ. Modern wound dressings: a systematic approach to wound healing. J Biomater Appl. 1992;7(2):142-213. https://doi.org/10.1177/088532829200700204
  6. Landscheidt K, Alabdulmohsen A, Hübscher M, Geber B, Hernekamp J-F, Goertz O. Extracorporeal Shock Waves Therapy for the Treatment of Acute and Chronic Wounds—A Prospective, Monocentric Clinical Trial to Examine the Effect of Shock Waves on Wound Healing. Health Sci Rep. 2025;8(1): e70311. https://doi.org/10.1002/hsr2.70311
  7. Gounden V, Singh M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024;10(1):43. https://doi.org/10.3390/gels10010043
  8. Hurlow J, Wolcott RD, Bowler PG. Clinical management of chronic wound infections: The battle against biofilm. Wound Repair Regen. 2025;33(1): e13241. https://doi.org/10.1111/wrr.13241
  9. Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med. 2024; 9(3):e10642. https://doi.org/10.1002/btm2.10642
  10. Armstrong DG, Tan T-W, Boulton AJ, Bus SA. Diabetic foot ulcers: a review. Jama. 2023;330(1):62-75. https://doi.org/10.1001/jama.2023.10578
  11. Zhang H, Lu Y, Huang L, Liu P, Ni J, Yang T, et al. Scalable and Versatile Metal Ion Solidificated Alginate Hydrogel for Skin Wound Infection Therapy. Adv Healthc Mater. 2024;13(18):e2303688. https://doi.org/10.1002/adhm.202303688
  12. Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014;103(8):2211-30. https://doi.org/10.1002/jps.24068
  13. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892-923. https://doi.org/10.1002/jps.21210
  14. Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J. 2018;100:1-11. https://doi.org/10.1016/j.eurpolymj.2017.12.046
  15. Sung K-Y, Lee S-Y. Nonoperative Management of Extravasation Injuries Associated With Neonatal Parenteral Nutrition Using Multiple Punctures and a Hydrocolloid Dressing. Wounds. 2016;28(5):145-51.
  16. Dhivya S, Padma VV, Santhini E. Wound dressings–a review. BioMedicine 2015;5(4):22. https://doi.org/10.7603/s40681-015-0022-9
  17. Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217-33. https://doi.org/10.1016/j.jare.2017.01.005
  18. Mahsood R, Miraftab M. Novel materials for moist wound management: Alginate-psyllium hybrid fibres. J Wound Care 2014;23(3):153-9. https://doi.org/10.12968/jowc.2014.23.3.153
  19. Singh R, Shitiz K, Singh A. Chitin and chitosan: biopolymers for wound management. Int Wound J. 2017;14(6):1276-89. https://doi.org/10.1111/iwj.12797
  20. Paul W, Sharma CP. Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 2004;18(1):18-23.
  21. Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015;15(8):511-23. https://doi.org/10.1038/nri3859
  22. Yan L, Chouw N, Jayaraman K. Flax fibre and its composites–A review. Compos B Eng. 2014;56:296-317. https://doi.org/10.1016/j.compositesb.2013.08.014
  23. Fares MM, Radaydeh SK, Abu-Haniyi LA. Mesoporous methacrylated flaxseed gum/2,2′-(Ethylenedioxy) diethanethiol hydrogels as wound healing bioadhesives. Ind Crops Prod. 2024;216: 118811. https://doi.org/10.1016/j.indcrop.2024.118811
  24. Kumari P, Ahina KM, Kannan K, Sreekumar S, Lakra R, Sivagnanam UT, Kiran MS. In vivo soft tissue regenerative potential of flax seed mucilage self-assembled collagen aerogels. Biomed Mater. 2024;19(2): 025023. https://doi.org/1088/1748-605X/ad1f79
  25. Abdelaziz AG, Nageh H, Abdalla MS, Abdo SM, Amer AA, Loutfy SA, et al. Enhanced wound healing with flaxseed extract-loaded polyvinyl alcohol nanofibrous scaffolds: Phytochemical composition, antioxidant activity, and antimicrobial properties. J Sci: Adv Mater Devices 2025;10(2):100862. https://doi.org/10.1016/j.jsamd.2025.100862
  26. Demir D. Potential use of extracted flax seed mucilage in the construction of macroporous cryo-scaffolds. Biomed Mater. 2024;19(5):055002. https://doi.org/1088/1748-605X/ad5bad
  27. Wu H, Liu J, Zhang X-H, Jin S, Li P, Liu H, et al. The combination of flaxseed lignans and PD-1/ PD-L1 inhibitor inhibits breast cancer growth via modulating gut microbiome and host immunity. Drug Resis Updat. 2025;80:101222. https://doi.org/1016/j.drup.2025.101222
  28. Zhang W, Hu J, Wu H, Lin X, Cai L. Stimuli-responsive hydrogel dressing for wound healing. APL Mater. 2025;13(1). https://doi.org/1063/5.0245545
  29. Devin PK, Farahpour MR, Tabatabaei ZG. Multicomponent biopolymer hydrogels based on polycaprolactone with the combination of nano silver and linalool for the healing of infectious wounds. Int Immunopharmacol. 2025;148:114075. https://doi.org/10.1016/j.intimp.2025.114075
  30. Qian K, Cui S, Wu Y, Goff H. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food hydrocoll. 2012;28(2):275-83. https://doi.org/10.1016/j.foodhyd.2011.12.019
  31. Ahmed R, Tariq M, Ali I, Asghar R, Khanam PN, Augustine R, Hasan A. Novel electrospun chitosan/ polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018; 120:385-93. https://doi.org/10.1016/j.ijbiomac.2018.08.057
  32. Jeon Y-J, Kamil JY, Shahidi F. Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. J Agric Food Chem. 2002;50(18):5167-78. https://doi.org/10.1021/jf011693l
  33. Mohan AC, Renjanadevi B. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Proc Technol. 2016;24:761-6. https://doi.org/10.1016/j.protcy.2016.05.078
  34. Gupta S, Pramanik AK, Kailath A, Mishra T, Guha A, Nayar S, Sinha A. Composition dependent structural modulations in transparent poly (vinyl alcohol) hydrogels. Colloids Surf B Biointerfaces 2009;74(1): 186-90. https://doi.org/10.1016/j.colsurfb.2009.07.015
  35. Saberian M, Roudsari RS, Haghshenas N, Rousta A, Alizadeh S. How the combination of alginate and chitosan can fabricate a hydrogel with favorable properties for wound healing. Heliyon 2024;10(11): https://doi.org/10.1016/j.heliyon.2024.e32040
  36. Pan P, Svirskis D, Waterhouse GI, Wu Z. Hydroxypropyl methylcellulose bioadhesive hydrogels for topical application and sustained drug release: the effect of polyvinylpyrrolidone on the physicomechanical properties of hydrogel. Pharmaceutics 2023;15(9):2360. https://doi.org/10.3390/pharmaceutics15092360
  37. Drozłowska E, Bartkowiak A, Łopusiewicz Ł. Characterization of flaxseed oil bimodal emulsions prepared with flaxseed oil cake extract applied as a natural emulsifying agent. Polymers 2020;12(10): 2207. https://doi.org/10.3390/polym12102207
  38. Yadav B, Kaur V, Narayan OP, Yadav SK, Kumar A, Wankhede DP. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. Front Plant Sci. 2022;13: 931275. https://doi.org/10.3389/fpls.2022.931275
  39. Bhadra P, Mitra M, Das G, Dey R, Mukherjee S. Interaction of chitosan capped ZnO nanorods with Escherichia coli. Mater Sci Eng C 2011;31(5):929-37. https://doi.org/10.1016/j.msec.2011.02.015
  40. Abdeen ZI, El Farargy AF, Negm NA. Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. J Mol Liq. 2018;250: 335-43. https://doi.org/10.1016/j.molliq.2017.12.032
  41. Qu L-J, Guo X-Q, Tian M-W, Lu A. Antimicrobial fibers based on chitosan and polyvinyl-alcohol. Fibers polym. 2014;15:1357-63. https://doi.org/10.1007/s12221-014-1357-7
  42. Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM. Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocoll. 2014;35:463-70. https://doi.org/10.1016/j.foodhyd.2013.07.002
  43. Santhoshkumar J, Kumar SV, Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour-Efficient Technol. 2017;3(4):459-65. https://doi.org/10.1016/j.reffit.2017.05.001
  44. Zafar S, Ashraf A, Ijaz MU, Muzammil S, Siddique MH, Afzal S, et al. Eco-friendly synthesis of antibacterial zinc nanoparticles using Sesamum indicum L. extract. J King Saud Univ Sci. 2020;32(1): 1116-22. https://doi.org/10.1016/j.jksus.2019.10.017
  45. Freundl R, Jägle EA. Processing TiC nanoparticle reinforced aluminum matrix composites in PBF-LB: Powder blending approach, particle sintering, precipitation and grain refinement. Mater Des. 2024;248:113490. https://doi.org/10.1016/j.matdes.2024.113490
  46. Li S. Optimization of ZnMnO3 microspheres as cathode materials with different sintering temperatures for zinc-ion batteries. Ionics 2025;31: 3433–3438. https://doi.org/1007/s11581-025-06131-5
  47. Clausell-Terol C, Barba-Juan A, Mormeneo-Segarra A, Putyra P, Jaworska L. Enhancing NiZn ferrite properties through microwave sintering: A comparative study. Bol Soc Esp Cerám Vidr. 2024;63(3):161-71. https://doi.org/10.1016/j.bsecv.2023.10.003
  48. Stella J, Abdelaal MAME, Kamal MAM, Shehu K, Alhayek A, Haupenthal J, et al. Spray drying of a zinc complexing agent for inhalation therapy of pulmonary fibrosis. Eur J Pharm Sci. 2024;202:106891. https://doi.org/10.1016/j.ejps.2024.106891
  49. Träger D, Młyniec K, Haraźna K, Słota D, Niziołek K, Jampilek J, Sobczak-Kupiec A. Development of Glutathione Hydrogel Carriers Containing Zinc Oxide Microparticles for Skin Regeneration Processes. Int J Mol Sci. 2025;26(4):1395. https://doi.org/10.3390/ijms26041395
  50. Mohanty R, Parida K. Carbamide-mediated facile sol-gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors. Electrochim Acta 2024;491:144327. https://doi.org/10.1016/j.electacta.2024.144327
  51. Chopra H, Bibi S, Kumar S, Khan M, Kumar P, Singh I. Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application. Gels 2022;8:111. https://doi.org/10.3390/gels8020111
  52. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER. Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci. 2018;449:591-602. https://doi.org/10.1016/j.apsusc.2018.01.022
  53. Wang L, Ma W, Zhang S, He M, Song P, Wang H, et al. Preparation of Colored Polymer Microspheres. Molecules 2025;30(2):375. https://doi.org/10.3390/molecules30020375
  54. Baharkoosh A, Karbasi F, Baniasadi H. Fabrication of polydimethylsiloxane/zinc oxide/silica nanocomposite for steel coating: Improving physical and mechanical properties of polydimethylsiloxane. Mater Today Commun. 2025;42:111333. https://doi.org/10.1016/j.mtcomm.2024.111333
  55. Güler S, Özler B. Fabrication and analysis of FeO/ZnO/epoxy composites via stereolithography: Structural and photocatalytic properties. Polym Compos. 2025;46(5):4829-4840. https://doi.org/10.1002/pc.29621
  56. Bîrcă AC, Minculescu MA, Niculescu A-G, Hudiță A, Holban AM, Alberts A, Grumezescu AM. Nanoparticle-Enhanced Collagen Hydrogels for Chronic Wound Management. J Funct Biomater. 2025;16(3):91. https://doi.org/10.3390/jfb16030091
  57. Kulma A, Skórkowska-Telichowska K, Kostyn K, Szatkowski M, Skała J, Drulis-Kawa Z, et al. New flax producing bioplastic fibers for medical purposes. Ind Crops Prod. 2015;68:80-9. https://doi.org/10.1016/j.indcrop.2014.09.013
  58. Imaan DU, Mir FQ, Ahmad B. Synthesis and characterization of a novel poly (vinyl alcohol)-based zinc oxide (PVA-ZnO) composite proton exchange membrane for DMFC. Int J Hydrogen Energy 2021; 46(22):12230-41. https://doi.org/10.1016/j.ijhydene.2020.05.008
  59. Balau L, Lisa G, Popa M, Tura V, Melnig V. Physico-chemical properties of chitosan films. Cent Eur J Chem. 2004;2:638-47. https://doi.org/10.2478/BF02482727
  60. Suflet DM, Popescu I, Pelin IM, Ichim DL, Daraba OM, Constantin M, Fundueanu G. Dual cross-linked chitosan/PVA hydrogels containing silver nanoparticles with antimicrobial properties. Pharmaceutics 2021;13(9): 1461. https://doi.org/10.3390/pharmaceutics13091461
  61. Wang S-F, Shen L, Zhang W-D, Tong Y-J. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 2005;6(6):3067-72. https://doi.org/10.1021/bm050378v
  62. Lozinsky VI, Zubov AL, Titova EF. Swelling behavior of poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. Enzyme Microb Technol. 1996;18(8):561-9. https://doi.org/10.1016/0141-0229(95)00148-4
  63. Akhlaq M, Azad AK, Ullah I, Nawaz A, Safdar M, Bhattacharya T, et al. Methotrexate-loaded gelatin and polyvinyl alcohol (Gel/PVA) hydrogel as a pH-sensitive matrix. Polymers 2021;13(14):2300. https://doi.org/10.3390/polym13142300
  64. Zhao WY, Fang QQ, Wang XF, Wang XW, Zhang T, Shi BH, et al. Chitosan‐calcium alginate dressing promotes wound healing: A preliminary study. Wound Repair Regen. 2020;28(3):326-37. https://doi.org/10.1111/wrr.12789
  65. Liu L, Lu L, Zhang H-J, Wang L-N. Influence of bovine serum albumin on corrosion behaviour of pure Zn in phosphate buffered saline. J Mater Sci: Mater Med. 2021;32:1-16. https://doi.org/10.1007/s10856-021-06567-x
  66. Wu D, Ensinas A, Verrier B, Primard C, Cuvillier A, Champier G, et al. Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol pharm. 2016;13(9):3279-91. https://doi.org/10.1021/acs.molpharmaceut.6b00568
  67. Bialik-Wąs K, Pluta K, Malina D, Barczewski M, Malarz K, Mrozek-Wilczkiewicz A. The effect of glycerin content in sodium alginate/poly (vinyl alcohol)-based hydrogels for wound dressing application. Int J Mol Sci. 2021;22(21):12022. https://doi.org/10.3390/ijms222112022
  68. Ismail AS, Darwish MS, Ismail EA. Synthesis and characterization of hydrophilic chitosan-polyvinyl acetate blends and their sorption performance in binary methanol–water mixture. Egypt J Pet. 2017;26 (1):17-22. https://doi.org/10.1016/j.ejpe.2016.02.006
  69. Teimouri A, Azadi M, Emadi R, Lari J, Chermahini AN. Preparation, characterization, degradation and biocompatibility of different silk fibroin based composite scaffolds prepared by freeze-drying method for tissue engineering application. Polym Degrad Stab. 2015;121:18-29. https://doi.org/10.1016/j.polymdegradstab.2015.08.004
  70. Azahari N, Othman N, Ismail H. Biodegradation studies of polyvinyl alcohol/corn starch blend films in solid and solution media. J Phys Sci. 2011;22(2):15-31.
  71. He H, Cai R, Wang Y, Tao G, Guo P, Zuo H, et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. Int J Biol Macromol. 2017; 104:457-64. https://doi.org/10.1016/j.ijbiomac.2017.06.009
  72. Li C, Shang W, Huang Y, Ge J, Ye J, Qu X, et al. Sodium alginate/chitosan composite scaffold reinforced with biodegradable polyesters/gelatin nanofibers for cartilage tissue engineering. Int J Biol Macromol. 2025;285:138054. https://doi.org/10.1016/j.ijbiomac.2024.138054
  73. Irfan M, Liu J-D, Du X-Y, Chen S, Xiao JJ. Hydrogen bond-reinforced double-network hydrogels with enhanced mechanical strength: Preparation, characterization and swelling behavior. J Polym Sci. 2024;62(15):3426-38. https://doi.org/10.1002/pol.20240083
  74. Krishna DV, Sankar MR. Synthesis and characterization of SiO2 nanoparticles reinforced 3D printable gelatin/PVA/guar gum/ hydroxypropyl methylcellulose-based biocomposite hydrogel. Ind Crops Prod. 2024;218:118977. https://doi.org/10.1016/j.indcrop.2024.118977

 

 

تحت نظارت وف ایرانی