ساخت و مشخصه‌یابی حسگر الکتروشیمیایی غیرآنزیمی مبتنی بر پلیمر قالب مولکولی به‌منظور پایش گلوکز در سیستم‌های پزشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

مقدمه و اهداف: دیابت یک بیماری مزمن است که در اثر اختلال در تنظیم سطح گلوکز خون ایجاد می‌شود. ازاین‌رو، پایش مستمر غلظت گلوکز، به‌ویژه در حین انجام فعالیت‌های روزانه، از اهمیت بالایی برخوردار است. در پژوهش حاضر، یک حسگر الکتروشیمیایی غیرآنزیمی مبتنی بر پلیمر قالب‌مولکولی برای شناسایی گلوکز خون طراحی و توسعه یافته است.
مواد و روش‌ها: در مرحله نخست، گرافن با استفاده از روش رسوب شیمیایی فاز بخار بر سطح نیکل سنتز شد. پس از انتقال گرافن به بستر پلی‌اتیلن‌ترفتالات و حذف نیکل با محلول کلرید آهن، فرایند پلیمریزاسیون الکتروشیمیایی دوپامین هیدروکلراید در حضور گلوکز بر سطح گرافن انجام شد. در ادامه، گلوکز با استفاده از محلول اسیدسولفوریک از ساختار حذف گردید و بدین ترتیب، ساختار پلیمر قالب‌مولکولی شکل گرفت.
یافته‌ها: نتایج طیف‌سنجی رامان نشان داد که گرافن سنتزشده، در گروه گرافن‌های کم‌لایه قرار دارد. همچنین، پس از تشکیل ساختار پلیمر قالب‌مولکولی و حذف گلوکز، مورفولوژی ساختار حفظ شد که بیانگر پایداری پلیمر پس از فرایند حذف می‌باشد. علاوه‌براین، خروج گلوکز از ساختار باعث افزایش هدایت الکتریکی شد که ناشی از ایجاد حفرات در سطح و تأییدی بر تشکیل موفق ساختار قالب‌مولکولی است. بر اساس نتایج حاصل از آزمون ولتامتری پالس تفاضلی، حسگر طراحی‌شده حد تشخیص 0/3 میکرومولار را در بازه خطی 0/2 تا 2 میکرومولار نشان داد.
نتیجه‌گیری: ادغام پلی‌دوپامین و گرافن در طراحی حسگر مبتنی بر پلیمر قالب‌مولکولی، موجب بهبود عملکرد آن در زمینه شناسایی الکتروشیمیایی گلوکز گردیده و نشان‌دهنده پتانسیل بالای این سامانه برای توسعه نسل جدیدی از حسگرهای غیرآنزیمی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication and Characterization of a Non-Enzymatic Electrochemical Sensor Based on Molecularly Imprinted Polymer for Glucose Monitoring in Medical Systems

نویسندگان [English]

  • Zahra Ghasemi
  • Mahshid Kharaziha
  • Hamidreza Salimi
  • Keyvan Raeissi
  • Fathollah Karimzadeh
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Introduction and Objectives: Diabetes is a chronic disease caused by disturbances in blood glucose levels. As a result, continuous and real-time glucose monitoring—especially during routine daily activities—remains essential for effective disease management. In the present study, a non-enzymatic electrochemical sensor incorporating a molecularly imprinted polymer (MIP) was developed for the selective and sensitive detection of glucose in blood samples.
Materials and Methods: Graphene was synthesized on a nickel substrate via chemical vapor deposition (CVD) and then transferred onto a polyethylene terephthalate (PET) film. The underlying nickel was subsequently etched away using an iron (III) chloride solution. To fabricate the MIP layer, dopamine hydrochloride was electropolymerized on the graphene surface in the presence of glucose as a template molecule. Following polymerization, the glucose was extracted with sulfuric acid, leaving behind molecularly imprinted cavities that serve as selective recognition sites for glucose detection.
Results: Raman spectroscopic analysis verified the few-layered structure of the synthesized graphene. The polymer morphology showed little change after template removal, suggesting that the structure remained stable. A notable reduction in the total resistance of the electrode following template removal was attributed to the generation of nanoscale cavities, confirming the successful formation of molecularly imprinted sites. Differential pulse voltammetry (DPV) analysis demonstrated a limit of detection of 0.3 μM and a well-defined linear response over the concentration range of 0.2 to 2 μM.
Conclusion: The combination of polydopamine and graphene in the MIP-based sensor notably improved its electrochemical response for glucose detection, highlighting its potential as a sensitive and enzyme-free sensing platform.

کلیدواژه‌ها [English]

  • Electrochemical sensor
  • Chemical vapor deposition
  • Molecularly imprinted polymer structure
  • Polydopamine
  • Glucose
  • Graphene
  1. Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharm. 2020;13(4):60. https://doi.org/10.3390/ph13040060
  2. Alexander S, Baraneedharan P, Balasubrahmanyan S, Ramaprabhu S. Highly sensitive and selective non enzymatic electrochemical glucose sensors based on Graphene Oxide-Molecular Imprinted Polymer. Mater Sci Eng C. 2017;78:124-9. https://doi.org/10.1016/j.msec.2017.04.045
  3. Magliano DJ, Boyko EJ. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2022. Available from: https://diabetesatlas.org
  4. Peng Z, Xie X, Tan Q, Kang H, Cui J, Zhang X, et al. Blood glucose sensors and recent advances: A review. J Innov Opt Health Sci. 2022;15(02):2230003. https://doi.org/10.1142/S1793545822300038
  5. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, et al. Non-enzymatic electrochemical sensing of glucose. Microchim Acta 2013;180:161-86. https://doi.org/10.1016/j.aej.2024.01.034
  6. Amala G, Gowtham S. Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv. 2017;7(59):36949-76. https://doi.org/10.1039/C7RA02845H
  7. Hassan MH, Vyas C, Grieve B, Bartolo P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sens. 2021;21(14): 4672. https://doi.org/10.3390/s21144672
  8. Mohapatra J, Ananthoju B, Nair V, Mitra A, Bahadur D, Medhekar N, et al. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl Surf Sci. 2018;442:332-41. https://doi.org/1016/j.apsusc.2018.02.124
  9. Sehit E, Drzazgowska J, Buchenau D, Yesildag C, Lensen M, Altintas Z. Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosens Bioelectron. 2020;165:112432. https://doi.org/10.1016/j.bios.2020.112432
  10. Peng M, Xiang H, Hu X, Shi S, Chen X. Boronate affinity-based surface molecularly imprinted polymers using glucose as fragment template for excellent recognition of glucosides. J Chromatogr A 2016;1474: 8-13. https://doi.org/1016/j.chroma.2016.10.059
  11. Nurhayati T, Royani I. Synthesis and characterization of MAA-based molecularly-imprinted polymer (MIP) with D-glucose template. J Phys Conf Ser. 2016;739:012143. https://doi.org/10.1088/1742-6596/739/1/012143
  12. Lamaoui A, Lahcen AA, Amine A. Unlocking the Potential of Molecularly Imprinted Polydopamine in Sensing Applications. Polym. 2023;15(18):3712. https://doi.org/10.3390/polym15183712
  13. Lamaoui A, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. Molecularly imprinted polymers based on polydopamine: Assessment of non-specific adsorption. Microchem J. 2021;164:106043. https://doi.org/10.1016/j.microc.2021.106043
  14. Güney S. An electrochemical sensor based on molecularly imprinted polydopamine coated on reduced graphene oxide for selective detection of ornidazole. Electroanal. 2023;35(7):e202200477. https://doi.org/10.1002/elan.202200477
  15. Wang L, Nie Y, Wang P, Li Y, Ma Q, Yu D. A novel bacterial imprinted polymers-electrochemiluminescent sensor for Lactobacillus salivarius detection. Sens Actuators B Chem. 2022;358:131467. https://doi.org/10.1016/j.snb.2022.131467
  16. Liu Y, Liang Y, Yang R, Li J, Qu L. A highly sensitive and selective electrochemical sensor based on polydopamine functionalized graphene and molecularly imprinted polymer for the 2, 4-dichlorophenol recognition and detection. Talanta 2019;195:691-8. https://doi.org/10.1016/j.talanta.2018.11.052
  17. Farshid S, Kharaziha M, Atapour M. A self-healing and bioactive coating based on duplex plasma electrolytic oxidation/polydopamine on AZ91 alloy for bone implants. J Magnes Alloy. 2023;11(2):592-606. https://doi.org/10.1016/j.jma.2022.05.020
  18. Moazami S, Kharaziha M, Emadi R, Dinari M. Multifunctional bioinspired bredigite-modified adhesive for bone fracture healing. ACS Appl Mater Interfaces. 2023;15(5):6499-513. https://doi.org/10.1021/acsami.2c20038
  19. Philip AS, Rison S, Cherian AR, KB A, George L, Varghese A. Electrochemical sensing of formaldehyde in fish samples using a polydopamine-modified stainless steel electrode. ECS J Solid State Sci Technol. 2021;10(6):067003. https://doi.org/10.1149/2162-8777/ac0b8e
  20. Oleneva E, Khaydukova M, Ashina J, Yaroshenko I, Jahatspanian I, Legin A, et al. A simple procedure to assess limit of detection for multisensor systems. Sens. 2019;19(6):1359. https://doi.org/10.3390/s19061359
  21. Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E. Chemical vapour deposition of graphene—Synthesis, characterisation, and applications: A review. Mol. 2020;25(17):3856. https://doi.org/10.3390/molecules25173856
  22. Zhang H, Zhang Y, Wang B, Chen Z, Sui Y, Zhang Y, et al. Effect of hydrogen in size-limited growth of graphene by atmospheric pressure chemical vapor deposition. J Electron Mater. 2015;44:79-86. https://doi.org/10.1007/s11664-014-3415-8
  23. Park MH, Kim TH, Yang CW. Thickness contrast of few‐layered graphene in SEM. Surf Interface Anal. 2012;44(11-12):1538-41. https://doi.org/10.1002/sia.4995
  24. Popov VN. Two-phonon Raman scattering in graphene. AIP Conf Proc. 2019;2075(1):110001. https://doi.org/10.1063/1.5091252
  25. Habibi A, Khoie SMM, Mahboubi F, Urgen M. Fast synthesis of turbostratic carbon thin coating by cathodic plasma electrolysis. Thin Solid Films. 2017;621:253-8. https://doi.org/10.1016/j.tsf.2016.05.036
  26. Kumar R, Mehta B. A parametric study on the influence of synthesis and transfer conditions on the quality of Graphene. J Nanosci Nanotechnol. 2017;17(1):286-99. https://doi.org/10.1166/jnn.2017.12594
  27. Lavin-Lopez MP, Valverde JL, Ruiz-Enrique MI, Sanchez-Silva L, Romero A. Thickness control of graphene deposited over polycrystalline nickel. New J Chem. 2015;39(6):4414-23. https://doi.org/10.1039/C5NJ00073D
  28. Wang L, Pagett M, Zhang W. Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications. Sens Actuators Rep. 2023;5:100153. https://10.1016/j.snr.2023.100153
  29. Palladino P, Bettazzi F, Scarano S. Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio) analysis. Anal Bioanal Chem. 2019;411:4327-38. https://doi.org/10.1007/s00216-019-01665-w
  30. Ahmad H, Umar K, Ali SG, Singh P, Islam SS, Khan HM. Preconcentration and speciation of arsenic by using a graphene oxide nanoconstruct functionalized with a hyperbranched polyethyleneimine. Microchim Acta 2018;185:1-7. https://doi.org/10.1007/s00604-018-2829-z
  31. Sedaghat S, Arshadi E, Afshar P, Nafar A, Dabbagh R. Rapid Green Biosynthesis and Characterization of Silver Nanoparticles using Glucose as a Green Route. Rev Roum Chim. 2019;64(5):409-13. https://doi.org/10.33224/rrch/2019.64.5.04
  32. Rebelo TS, Miranda IM, Sousa L, Ribeiro JA, Silva AF, Pereira CM. New MIP-based Electrochemical Device for On-site Detection of Glucose Oxidase. Sens transducers. 2020;246(7):16-22. https://doi.org/10.3390/bios13060620
  33. Diouf A, Bouchikhi B, El Bari N. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. Mater Sci Eng C 2019;98:1196-209. https://doi.org/10.1016/j.msec.2019.01.001
  34. Wu H, Tian Q, Zheng W, Jiang Y, Xu J, Li X, et al. Non-enzymatic glucose sensor based on molecularly imprinted polymer: A theoretical, strategy fabrication and application. J Solid State Electrochem. 2019;23:1379-88. https://doi.org/0.1007/s10008-019-04237-1
  35. Ghasemi Z, Jazi HS, Kharaziha M, Raeissi K, Karimzadeh F. A freestanding electrochemical sensor based on surface molecularly imprinted polydopamine for glucose detection. Surf Interfaces. 2025;62: 106144. https://doi.org/10.1002/elan.202200477
  36. Verma D, Hashmi S, Lakshmi G, Sajwan RK, Kumar A, Solanki PR. Electrochemical sensor based on polydopamine-molecularly imprinted polymer for detection of 4-ethylphenyl sulfate “a novel gut metabolite”: Fabrication, characterization, and performance evaluation in human urine. Microchem J. 2023;193:108964. https://doi.org/10.1080/10408347.2025.2463442
  37. Karaman C, Karaman O, Atar N, Yola ML. A molecularly imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29 (TNO) for glucose detection. Microchim Acta 2022;189(1):24. https://doi.org/10.1007/s00604-021-05128-x
  38. Caldara M, Lowdon JW, van Wissen G, Ferrari AGM, Crapnell RD, Cleij TJ, et al. Dipstick Sensor Based on Molecularly Imprinted Polymer‐Coated Screen‐Printed Electrodes for the Single‐Shot Detection of Glucose in Urine Samples—From Fundamental Study toward Point‐of‐Care Application. Adv Mater Interfaces 2023;10(18):2300182. https://doi.org/10.1002/admi.202300182
  39. Kousseff CJ, Wustoni S, Silva RK, Lifer A, Savva A, Frey GL, et al. Single‐Component Electroactive Polymer Architectures for Non‐Enzymatic Glucose Sensing. Adv Sci. 2024:2308281. https://doi.org/10.1002/advs.202308281

 

 

تحت نظارت وف ایرانی