سنتز هیدروترمال نانوذرات Sn(Sb)O2 و پوشش‌دهی الکتروفورتیک آن‌ها روی تیتانیوم خالص تجاری برای تخریب الکتروکاتالیستی متیلن بلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانشکده مهندسی مواد، دانشکده فنی مهندسی، دانشگاه مراغه، مراغه، آذربایجان شرقی، ایران

چکیده

مقدمه و اهداف: آلودگی پساب‌های حاصل از صنایع نساجی، دارویی و کشاورزی، همواره یکی از مشکلات جدی در زمینه محیط زیست بوده است. با توجه به ساختار پیچیده آلاینده‌های موجود، روش‌های سنتی تصفیه آب اغلب موثر نبوده و یا کارایی پایینی دارند. روش الکتروکاتالیستی که یکی از فرایندهای اکسیداسیون پیشرفته است، دارای قابلیت بسیار بالایی برای حذف آلاینده‌های آلی از پساب‌های صنعتی است. اکسید قلع، به‌طور ذاتی دارای خاصیت الکتروکاتالیستی مناسبی است که با اصلاح ساختاری می‌توان این ویژگی را در آن بهبود بخشید. 
مواد و روش‌ها: در این پژوهش، نانوذرات اکسید قلع دوپ‌شده با آنتیموان (Sn(Sb)O2)، با استفاده از روش هیدروترمال سنتز شدند. بررسی‌های ریزساختاری ذرات توسط پراش پرتو ایکس، طیف‌سنجی تبدیل فوریه فروسرخ و میکروسکوپ الکترونی روبشی انجام شد. این نانوذرات با استفاده از روش الکتروفورتیک روی زیرلایه‌های تیتانیوم خالص تجاری پوشش داده شد و خواص پوشش، توسط ارزیابی‌های سطحی و آزمون‌های الکتروشیمیایی (طیف‌سنجی امپدانس الکتروشیمیایی و ولتامتری چرخه‌ای) بررسی شد. سپس عملکرد الکتروکاتالیستی آن‌ها با تخریب رنگ متیلن بلو از محلول‌های آبی، به‌عنوان آلاینده استاندارد، ارزیابی شد. 
یافته‌ها: نانوذرات Sn(Sb)O2  به روش هیدروترمال سنتز و ساختار آن‌ها توسط آزمون‌های پراش پرتو ایکس، طیف‌سنجی پراش انرژی پرتو ایکس و طیف‌سنجی تبدیل فوریه فروسرخ تایید شد. بررسی‌های سطح و ضخامت پوشش توسط میکروسکوپ الکترونی روبشی، کیفیت بالای پوشش الکتروفورتیک را نشان دادند. 
نتیجه‌گیری: الکترود ساخته شده در مدت دو ساعت، بازده تخریب 66 و 89 درصد، به‌ترتیب در محلول های سدیم سولفات و پتاسیم کلرید حاوی ppm 5 متیلن بلو نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydrothermal Synthesis of Sn(Sb)O2 Nanoparticles and Their Electrophoretic Coating on Commercial Pure Titanium for Electrocatalytic Degradation of Methylene Blue

نویسندگان [English]

  • Majid Shirouye 1
  • Keyvan Raeissi 1
  • Mousa Farhadian 2
1 Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
2 Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh, East Azerbayjan, Iran
چکیده [English]

Introduction and Objectives: Pollution of wastewater from textile, pharmaceutical, and agricultural industries has always been a serious environmental problem. Due to the complex structure of existing pollutants, traditional water treatment methods are often ineffective or have low efficiency. Electrocatalytic method, which is one of the advanced oxidation processes, has a very high ability to remove organic pollutants from industrial wastewater. Tin oxide inherently has good electrocatalytic properties, which can be improved by structural modification.
Materials and Methods: In this study, antimony-doped tin oxide nanoparticles were synthesized using the hydrothermal method. Structural studies of the particles were carried out by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. These nanoparticles were coated on commercial pure titanium samples using electrophoretic method and the coating properties were investigated by surface evaluations and electrochemical methods (electrochemical impedance spectroscopy and cyclic voltammetry). Their electrocatalytic performance was evaluated using methylene blue pigment as a standard pollutant.
Results: Sn(Sb)O2 nanoparticles were successfully obtained by a hydrothermal method and their structure was confirmed by X-ray diffraction, energy dispersive X-ray spectroscopy, and fourier transform infrared spectroscopy. Surface and coating thickness examinations by scanning electron microscope showed the high quality of the electrophoretic coating.
Conclusion: The fabricated electrode showed 66 and 89 % degradation efficiency in sodium sulfate and potassium chloride solutions containing 5 ppm methylene blue, respectively, within 2 hours.

کلیدواژه‌ها [English]

  • Sn(Sb)O2 nanoparticles
  • Hydrothermal synthesis
  • Electrophoretic coating
  • Electrocatalyst
  • Methylene blue
  1. Martínez-Huitle CA, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev. 2006;35(12): 1324-40. https://doi.org/10.1039/B517632H
  2. Qiao J, Xiong Y. Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants. J Water Process Eng. 2021;44:102308. https://doi.org/10.1016/j.jwpe.2021.102308
  3. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone-Sci Eng. 2006;28(6):353-414. https://doi.org/10.1080/01919510600985937
  4. Balu S, Chuaicham C, Balakumar V, Rajendran S, Sasaki K, Sekar K, et al. Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. Chemosphere. 2022;298:134311. https://doi.org/10.1016/j.chemosphere.2022.134311
  5. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone-Sci Eng. 2006;28(6):353-414. https://doi.org/10.1080/01919510600985937
  6. Marinho BA, Suhadolnik L, Likozar B, Huš M, Marinko Ž, Čeh M. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulations, catalysts and reactors. J Clean Prod. 2022;343:131061. https://doi.org/10.1016/j.jclepro.2022.131061
  7. Ahn YY, Yang SY, Choi C, Choi W, Kim S, Park H. Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: Effects of electrocatalyst composition and electrolyte. Catal Today 2017;282: 57-64. https://doi.org/10.1016/j.cattod.2016.03.011
  8. Sun W, Liu D, Zhang M. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Front Chem Sci Eng. 2021;15(6):1427-43. https://doi.org/10.1007/s11705-021-2108-0
  9. Wan C, Zhao L, Wu C, Lin L, Liu X. Bi5+ doping improves the electrochemical properties of Ti/SnO2–Sb/PbO2 electrode and its electrocatalytic performance for phenol. J Clean Prod. 2022;380:135005. https://doi.org/10.1016/j.jclepro.2022.135005
  10. Anglada Á, Urtiaga A, Ortiz I. Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol. 2009;84(12):1747-55. https://doi.org/10.1002/jctb.2214
  11. Fu R, Zhang P-S, Jiang Y-X, Sun L, Sun X-H. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods. Chemosphere. 2023;311:136993, https://doi.org/10.1016/j.chemosphere.2022.136993.
  12. Zhang J, Wei X, Miao J, Zhang R, Zhang J, Zhou M, et al. Enhanced performance of an Al-doped SnO2 anode for the electrocatalytic oxidation of organic pollutants in water. Mater Today Commun. 2020;24: https://doi.org/10.1016/j.mtcomm.2020.101164
  13. Shu Y, Hu M, Zhou M, Yin H, Liu P, Zhang H, et al. Emerging electrocatalysts for electrochemical advanced oxidation processes (EAOPs): recent progress and perspectives. Mater Chem Front. 2023;7(13):2528-53. https://doi.org/10.1039/D2QM01294D
  14. Gan YX, Jayatissa AH, Yu Z, Chen X, Li M. Hydrothermal Synthesis of Nanomaterials. J Nanomater. 2020;2020(1):8917013. https://doi.org/10.1155/2020/8917013
  15. Li M, Cai Z, Yang Y, Wang Y, Zhong H, Li T. Preparation and characterization of Sb-doped SnO2 (ATO) nanoparticles with NIR shielding by an oxidation coprecipitation hydrothermal method. J Disper Sci Technol. 2020;41(11):1607-15. https://doi.org/10.1080/01932691.2019.1645020
  16. Balasubramanian K, Venkatachari G. Synthesis and characterization of Sb doped SnO2 for the photovoltaic applications: different route. Mater Res Express. 2019;6(12):1250k6. https://doi.org/10.1088/2053-1591/ab82c6
  17. Mayandi J, Marikkannan M, Ragavendran V, Jayabal P. Hydrothermally synthesized Sb and Zn doped SnO2 J NanoSci Nanotechnol. 2014;2:707-10.
  18. Yang SY, Choo YS, Kim S, Lim SK, Lee J, Park H. Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals. Appl Catal B: Environ.2012;111-112:317-25. https://doi.org/10.1016/j.apcatb.2011.10.014
  19. Lim D, Kim Y, Nam D, Hwang S, Shim SE, Baeck S-H. Influence of the Sb content in Ti/SnO2-Sb electrodes on the electrocatalytic behaviour for the degradation of organic matter. J Clean Prod. 2018;197:1268-74. https://doi.org/10.1016/j.jclepro.2018.06.301
  20. Choi W, Choi JH, Park H. Electrocatalytic activity of metal-doped SnO2 for the decomposition of aqueous contaminants: Ta-SnO2 Sb-SnO2. J Chem Eng. 2021;409:128175. https://doi.org/10.1016/j.cej.2020.128175
  21. Ammari A, Trari M, Zebbar N. Transport properties in Sb-doped SnO2 thin films: Effect of UV illumination and temperature dependence. Mat Sci Semicon Proc. 2019; 89:97-104. https://doi.org/10.1016/j.mssp.2018.09.003
  22. Suvarna T, Ganga Reddy K, Mohan VM, Lavanya G, Ramana Reddy MV, Vardhani CP. Investigation on Sb-doped SnO2 as an efficient sensor for the detection of formaldehyde. Mater Today Commun. 2023;37:107438. https://doi.org/10.1016/j.mtcomm.2023.107438
  23. Khaskhoussi A, Calabrese L, Proverbio E. Tailoring Superhydrophobic Surfaces on AA6082 Aluminum Alloy by Etching in HF/HCl Solution for Enhanced Corrosion Protection. La Metall Ital. 2022;113(9):8-14.
  24. Farhadian M, Raeissi K, Golozar MA, Labbaf S, Hajilou T, Barnoush A. Electrophoretic deposition and corrosion performance of Zirconia-Silica composite coating applied on surface treated 316L stainless steel: Toward improvement of interface structure. Surf Coat Technol. 2019;380:125015. https://doi.org/10.1016/j.surfcoat.2019.125015
  25. Zhang H, Qian J, Zhang J, Xu J. Enhancing the electrochemical activity and stability of Sb-SnO2 based electrodes by the introduction of nickel oxide. J Alloys Compd. 2021;882:160700. https://doi.org/10.1016/j.jallcom.2021.160700
  26. Macdonald DD. The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochim Acta. 2011;56(4):1761-72. https://doi.org/10.1016/j.electacta.2010.11.005
  27. Kou T, Wang S, Hauser JL, Chen M, Oliver SRJ, Ye Y, et al. Ni Foam-Supported Fe-Doped β-Ni(OH)2 Nanosheets Show Ultralow Overpotential for Oxygen Evolution Reaction. ACS Energy Lett. 2019;4(3):622-8. https://doi.org/10.1021/acsenergylett.9b00047
  28. Li D, Tang J, Zhou X, Li J, Sun X, Shen J, et al. Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode. Chemosphere. 2016;149:49-56. https://doi.org/10.1016/j.chemosphere.2016.01.078
  29. Duan T, Wen Q, Chen Y, Zhou Y, Duan Y. Enhancing electrocatalytic performance of Sb-doped SnO2 electrode by compositing nitrogen-doped graphene nanosheets. J Hazard Mater. 2014;280:304-14. https://doi.org/10.1016/j.jhazmat.2014.08.018
  30. Wang Z, Xu M, Wang F, Liang X, Wei Y, Hu Y, et al. Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater. Electrochim Acta. 2017;247:535-47. https://doi.org/10.1016/j.electacta.2017.07.057.
  31. Zhang H, Qian J, Zhang J, Xu J. Preparation of TiO2@Sn(Sb)O2 core–shell composites and their applications for electrocatalytic degradation of methylene blue. J Mater Sci: Mater Electron. 2021;32(2):2026-40. https://doi.org/10.1007/s10854-020-04969-1
  32. Jose J, Philip L. Effect of various electrolytes and other wastewater constituents on the degradation of volatile organic compounds in aqueous solution by pulsed power plasma technology. Environ Sci: Water Res Technol. 2020;6(8):2209-22. https://doi.org/10.1039/D0EW00388C

 

 

تحت نظارت وف ایرانی